Radio Analysis of SN2004C Reveals an Unusual CSM Density Profile as a Harbinger of Core Collapse

We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-10, Vol.938 (1), p.84
Hauptverfasser: DeMarchi, Lindsay, Margutti, R., Dittman, J., Brunthaler, A., Milisavljevic, D., Bietenholz, Michael F., Stauffer, C., Brethauer, D., Coppejans, D., Auchettl, K., Alexander, K. D., Kilpatrick, C. D., Bright, Joe S., Kelley, L. Z., Stroh, Michael C., Jacobson-Galán, W. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion’s forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∼0.06 c that carries an energy of ≈10 49 erg. Our modeling further reveals a flat CSM density profile ρ CSM ∝ R −0.03±0.22 up to a break radius R br ≈ (1.96 ± 0.10) × 10 16 cm, with a steep density gradient following ρ CSM ∝ R −2.3±0.5 at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∼0.021 M ☉ , and that the progenitor’s effective mass-loss rate varied with time over the range (50–500) × 10 −5 M ☉ yr −1 for an adopted wind velocity v w = 1000 km s −1 and shock microphysical parameters ϵ e = 0.1, ϵ B = 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass loss powered by gravity waves and/or interaction with a binary companion.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac8c26