Evolution of X-Ray Activity in <25 Myr Old Pre-main Sequence Stars

Measuring the evolution of X-ray emission from pre-main-sequence (PMS) stars gives insight into two issues: the response of magnetic dynamo processes to changes in the interior structure, and the effects of high-energy radiation on protoplanetary disks and primordial planetary atmospheres. We presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-08, Vol.935 (1), p.43
Hauptverfasser: Getman, Konstantin V., Feigelson, Eric D., Garmire, Gordon P., Broos, Patrick S., Kuhn, Michael A., Preibisch, Thomas, Airapetian, Vladimir S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 43
container_title The Astrophysical journal
container_volume 935
creator Getman, Konstantin V.
Feigelson, Eric D.
Garmire, Gordon P.
Broos, Patrick S.
Kuhn, Michael A.
Preibisch, Thomas
Airapetian, Vladimir S.
description Measuring the evolution of X-ray emission from pre-main-sequence (PMS) stars gives insight into two issues: the response of magnetic dynamo processes to changes in the interior structure, and the effects of high-energy radiation on protoplanetary disks and primordial planetary atmospheres. We present a sample of 6003 stars with ages 7–25 Myr in 10 nearby open clusters from Chandra X-ray and Gaia-EDR3 surveys. Combined with previous results in large samples of younger (≲5 Myr) stars in MYStIX and SFiNCs star-forming regions, mass-stratified activity-age relations are derived for the early phases of stellar evolution. X-ray luminosity (LX) is constant during the first few Myr, possibly due to the presence of extended X-ray coronas insensitive to temporal changes in stellar size. LX then decays during the 7–25 Myr period, more rapidly as stellar mass increases. This decay is interpreted as decreasing efficiency of the α2 dynamo as radiative cores grow and a solar-type αΩ dynamo emerges. For more massive 3.5–7 M⊙ fully radiative stars, the X-ray emission plummets—indicating the lack of an effective magnetic dynamo. The findings provide improved measurements of high-energy radiation effects on circumstellar material, first for the protoplanetary disk and then for the atmospheres of young planets. The observed X-ray luminosities can be so high that an inner Earth-mass rocky, unmagnetized planet around a solar-mass PMS star might lose its primary and secondary atmospheres within a few (several) million years. PMS X-ray emission may thus have a significant impact on the evolution of early-planetary atmospheres and the conditions promoting the rise of habitability.
doi_str_mv 10.3847/1538-4357/ac7c69
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac7c69</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701571397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-27ea452155b17766b61c024b5aaec5ed65b7c40d72be5b8b0ee1d20d0c83933e3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3Dx4CXo3N52YXvNTSqlCpWIXeQjabwpZ2U5O0sP-9WVb05GmYN_Pegx8A1wTfs5zLEREsR5wJOdJGmqw4AYNf6RQMMMYcZUyuzsFFCJtupUUxAI_To9seYu0a6NZwhd51C8cm1sc6trBu4AMV8LX1cLGt4Ju3aKeTuLRfB9sYC5dR-3AJztZ6G-zVzxyCz9n0Y_KM5ounl8l4jgyTJCIqreaCEiFKImWWlRkxmPJSaG2NsFUmSmk4riQtrSjzEltLKoorbHJWMGbZENz2uXvvUn-IauMOvkmVikpMhCSskOkL91_GuxC8Xau9r3fat4pg1ZFSHRbVYVE9qWS56S2NDlo10adATFliRHhO0_muP9du_1f5b9o3MN9v6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701571397</pqid></control><display><type>article</type><title>Evolution of X-Ray Activity in &lt;25 Myr Old Pre-main Sequence Stars</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>NASA Technical Reports Server</source><source>Alma/SFX Local Collection</source><creator>Getman, Konstantin V. ; Feigelson, Eric D. ; Garmire, Gordon P. ; Broos, Patrick S. ; Kuhn, Michael A. ; Preibisch, Thomas ; Airapetian, Vladimir S.</creator><creatorcontrib>Getman, Konstantin V. ; Feigelson, Eric D. ; Garmire, Gordon P. ; Broos, Patrick S. ; Kuhn, Michael A. ; Preibisch, Thomas ; Airapetian, Vladimir S.</creatorcontrib><description>Measuring the evolution of X-ray emission from pre-main-sequence (PMS) stars gives insight into two issues: the response of magnetic dynamo processes to changes in the interior structure, and the effects of high-energy radiation on protoplanetary disks and primordial planetary atmospheres. We present a sample of 6003 stars with ages 7–25 Myr in 10 nearby open clusters from Chandra X-ray and Gaia-EDR3 surveys. Combined with previous results in large samples of younger (≲5 Myr) stars in MYStIX and SFiNCs star-forming regions, mass-stratified activity-age relations are derived for the early phases of stellar evolution. X-ray luminosity (LX) is constant during the first few Myr, possibly due to the presence of extended X-ray coronas insensitive to temporal changes in stellar size. LX then decays during the 7–25 Myr period, more rapidly as stellar mass increases. This decay is interpreted as decreasing efficiency of the α2 dynamo as radiative cores grow and a solar-type αΩ dynamo emerges. For more massive 3.5–7 M⊙ fully radiative stars, the X-ray emission plummets—indicating the lack of an effective magnetic dynamo. The findings provide improved measurements of high-energy radiation effects on circumstellar material, first for the protoplanetary disk and then for the atmospheres of young planets. The observed X-ray luminosities can be so high that an inner Earth-mass rocky, unmagnetized planet around a solar-mass PMS star might lose its primary and secondary atmospheres within a few (several) million years. PMS X-ray emission may thus have a significant impact on the evolution of early-planetary atmospheres and the conditions promoting the rise of habitability.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac7c69</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Astrophysics ; Atmospheric evolution ; Corona ; Coronas ; Emission ; Emission measurements ; Habitability ; Luminosity ; Open clusters ; Planet formation ; Planetary atmospheres ; Planetary evolution ; Planets ; Pre-main sequence stars ; Protoplanetary disks ; Radiation ; Radiation effects ; Single x-ray stars ; Star formation ; Stellar age ; Stellar evolution ; Stellar mass ; Stellar x-ray flares ; X-ray emissions ; X-ray stars ; X-rays</subject><ispartof>The Astrophysical journal, 2022-08, Vol.935 (1), p.43</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-27ea452155b17766b61c024b5aaec5ed65b7c40d72be5b8b0ee1d20d0c83933e3</citedby><cites>FETCH-LOGICAL-c371t-27ea452155b17766b61c024b5aaec5ed65b7c40d72be5b8b0ee1d20d0c83933e3</cites><orcidid>0000-0002-5077-6734 ; 0000-0002-6137-8280 ; 0000-0002-7872-2025 ; 0000-0002-7371-5416 ; 0000-0002-0631-7514 ; 0000-0003-3130-7796 ; 0000-0003-4452-0588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac7c69/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,800,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Getman, Konstantin V.</creatorcontrib><creatorcontrib>Feigelson, Eric D.</creatorcontrib><creatorcontrib>Garmire, Gordon P.</creatorcontrib><creatorcontrib>Broos, Patrick S.</creatorcontrib><creatorcontrib>Kuhn, Michael A.</creatorcontrib><creatorcontrib>Preibisch, Thomas</creatorcontrib><creatorcontrib>Airapetian, Vladimir S.</creatorcontrib><title>Evolution of X-Ray Activity in &lt;25 Myr Old Pre-main Sequence Stars</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Measuring the evolution of X-ray emission from pre-main-sequence (PMS) stars gives insight into two issues: the response of magnetic dynamo processes to changes in the interior structure, and the effects of high-energy radiation on protoplanetary disks and primordial planetary atmospheres. We present a sample of 6003 stars with ages 7–25 Myr in 10 nearby open clusters from Chandra X-ray and Gaia-EDR3 surveys. Combined with previous results in large samples of younger (≲5 Myr) stars in MYStIX and SFiNCs star-forming regions, mass-stratified activity-age relations are derived for the early phases of stellar evolution. X-ray luminosity (LX) is constant during the first few Myr, possibly due to the presence of extended X-ray coronas insensitive to temporal changes in stellar size. LX then decays during the 7–25 Myr period, more rapidly as stellar mass increases. This decay is interpreted as decreasing efficiency of the α2 dynamo as radiative cores grow and a solar-type αΩ dynamo emerges. For more massive 3.5–7 M⊙ fully radiative stars, the X-ray emission plummets—indicating the lack of an effective magnetic dynamo. The findings provide improved measurements of high-energy radiation effects on circumstellar material, first for the protoplanetary disk and then for the atmospheres of young planets. The observed X-ray luminosities can be so high that an inner Earth-mass rocky, unmagnetized planet around a solar-mass PMS star might lose its primary and secondary atmospheres within a few (several) million years. PMS X-ray emission may thus have a significant impact on the evolution of early-planetary atmospheres and the conditions promoting the rise of habitability.</description><subject>Astrophysics</subject><subject>Atmospheric evolution</subject><subject>Corona</subject><subject>Coronas</subject><subject>Emission</subject><subject>Emission measurements</subject><subject>Habitability</subject><subject>Luminosity</subject><subject>Open clusters</subject><subject>Planet formation</subject><subject>Planetary atmospheres</subject><subject>Planetary evolution</subject><subject>Planets</subject><subject>Pre-main sequence stars</subject><subject>Protoplanetary disks</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Single x-ray stars</subject><subject>Star formation</subject><subject>Stellar age</subject><subject>Stellar evolution</subject><subject>Stellar mass</subject><subject>Stellar x-ray flares</subject><subject>X-ray emissions</subject><subject>X-ray stars</subject><subject>X-rays</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>CYI</sourceid><recordid>eNp1kM1LAzEQxYMoWKt3Dx4CXo3N52YXvNTSqlCpWIXeQjabwpZ2U5O0sP-9WVb05GmYN_Pegx8A1wTfs5zLEREsR5wJOdJGmqw4AYNf6RQMMMYcZUyuzsFFCJtupUUxAI_To9seYu0a6NZwhd51C8cm1sc6trBu4AMV8LX1cLGt4Ju3aKeTuLRfB9sYC5dR-3AJztZ6G-zVzxyCz9n0Y_KM5ounl8l4jgyTJCIqreaCEiFKImWWlRkxmPJSaG2NsFUmSmk4riQtrSjzEltLKoorbHJWMGbZENz2uXvvUn-IauMOvkmVikpMhCSskOkL91_GuxC8Xau9r3fat4pg1ZFSHRbVYVE9qWS56S2NDlo10adATFliRHhO0_muP9du_1f5b9o3MN9v6A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Getman, Konstantin V.</creator><creator>Feigelson, Eric D.</creator><creator>Garmire, Gordon P.</creator><creator>Broos, Patrick S.</creator><creator>Kuhn, Michael A.</creator><creator>Preibisch, Thomas</creator><creator>Airapetian, Vladimir S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5077-6734</orcidid><orcidid>https://orcid.org/0000-0002-6137-8280</orcidid><orcidid>https://orcid.org/0000-0002-7872-2025</orcidid><orcidid>https://orcid.org/0000-0002-7371-5416</orcidid><orcidid>https://orcid.org/0000-0002-0631-7514</orcidid><orcidid>https://orcid.org/0000-0003-3130-7796</orcidid><orcidid>https://orcid.org/0000-0003-4452-0588</orcidid></search><sort><creationdate>20220801</creationdate><title>Evolution of X-Ray Activity in &lt;25 Myr Old Pre-main Sequence Stars</title><author>Getman, Konstantin V. ; Feigelson, Eric D. ; Garmire, Gordon P. ; Broos, Patrick S. ; Kuhn, Michael A. ; Preibisch, Thomas ; Airapetian, Vladimir S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-27ea452155b17766b61c024b5aaec5ed65b7c40d72be5b8b0ee1d20d0c83933e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Atmospheric evolution</topic><topic>Corona</topic><topic>Coronas</topic><topic>Emission</topic><topic>Emission measurements</topic><topic>Habitability</topic><topic>Luminosity</topic><topic>Open clusters</topic><topic>Planet formation</topic><topic>Planetary atmospheres</topic><topic>Planetary evolution</topic><topic>Planets</topic><topic>Pre-main sequence stars</topic><topic>Protoplanetary disks</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Single x-ray stars</topic><topic>Star formation</topic><topic>Stellar age</topic><topic>Stellar evolution</topic><topic>Stellar mass</topic><topic>Stellar x-ray flares</topic><topic>X-ray emissions</topic><topic>X-ray stars</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Getman, Konstantin V.</creatorcontrib><creatorcontrib>Feigelson, Eric D.</creatorcontrib><creatorcontrib>Garmire, Gordon P.</creatorcontrib><creatorcontrib>Broos, Patrick S.</creatorcontrib><creatorcontrib>Kuhn, Michael A.</creatorcontrib><creatorcontrib>Preibisch, Thomas</creatorcontrib><creatorcontrib>Airapetian, Vladimir S.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Getman, Konstantin V.</au><au>Feigelson, Eric D.</au><au>Garmire, Gordon P.</au><au>Broos, Patrick S.</au><au>Kuhn, Michael A.</au><au>Preibisch, Thomas</au><au>Airapetian, Vladimir S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of X-Ray Activity in &lt;25 Myr Old Pre-main Sequence Stars</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>935</volume><issue>1</issue><spage>43</spage><pages>43-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Measuring the evolution of X-ray emission from pre-main-sequence (PMS) stars gives insight into two issues: the response of magnetic dynamo processes to changes in the interior structure, and the effects of high-energy radiation on protoplanetary disks and primordial planetary atmospheres. We present a sample of 6003 stars with ages 7–25 Myr in 10 nearby open clusters from Chandra X-ray and Gaia-EDR3 surveys. Combined with previous results in large samples of younger (≲5 Myr) stars in MYStIX and SFiNCs star-forming regions, mass-stratified activity-age relations are derived for the early phases of stellar evolution. X-ray luminosity (LX) is constant during the first few Myr, possibly due to the presence of extended X-ray coronas insensitive to temporal changes in stellar size. LX then decays during the 7–25 Myr period, more rapidly as stellar mass increases. This decay is interpreted as decreasing efficiency of the α2 dynamo as radiative cores grow and a solar-type αΩ dynamo emerges. For more massive 3.5–7 M⊙ fully radiative stars, the X-ray emission plummets—indicating the lack of an effective magnetic dynamo. The findings provide improved measurements of high-energy radiation effects on circumstellar material, first for the protoplanetary disk and then for the atmospheres of young planets. The observed X-ray luminosities can be so high that an inner Earth-mass rocky, unmagnetized planet around a solar-mass PMS star might lose its primary and secondary atmospheres within a few (several) million years. PMS X-ray emission may thus have a significant impact on the evolution of early-planetary atmospheres and the conditions promoting the rise of habitability.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac7c69</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-5077-6734</orcidid><orcidid>https://orcid.org/0000-0002-6137-8280</orcidid><orcidid>https://orcid.org/0000-0002-7872-2025</orcidid><orcidid>https://orcid.org/0000-0002-7371-5416</orcidid><orcidid>https://orcid.org/0000-0002-0631-7514</orcidid><orcidid>https://orcid.org/0000-0003-3130-7796</orcidid><orcidid>https://orcid.org/0000-0003-4452-0588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-08, Vol.935 (1), p.43
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac7c69
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; NASA Technical Reports Server; Alma/SFX Local Collection
subjects Astrophysics
Atmospheric evolution
Corona
Coronas
Emission
Emission measurements
Habitability
Luminosity
Open clusters
Planet formation
Planetary atmospheres
Planetary evolution
Planets
Pre-main sequence stars
Protoplanetary disks
Radiation
Radiation effects
Single x-ray stars
Star formation
Stellar age
Stellar evolution
Stellar mass
Stellar x-ray flares
X-ray emissions
X-ray stars
X-rays
title Evolution of X-Ray Activity in <25 Myr Old Pre-main Sequence Stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20X-Ray%20Activity%20in%20%3C25%20Myr%20Old%20Pre-main%20Sequence%20Stars&rft.jtitle=The%20Astrophysical%20journal&rft.au=Getman,%20Konstantin%20V.&rft.date=2022-08-01&rft.volume=935&rft.issue=1&rft.spage=43&rft.pages=43-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac7c69&rft_dat=%3Cproquest_cross%3E2701571397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701571397&rft_id=info:pmid/&rfr_iscdi=true