SNIa Cosmology Analysis Results from Simulated LSST Images: From Difference Imaging to Constraints on Dark Energy

The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to process ∼10 6 transient detections per night. For precision measurements of cosmological parameters and rates, it is critical to understand the detection efficiency, magnitude limits, artifact contamination levels, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-08, Vol.934 (2), p.96
Hauptverfasser: Sánchez, B. O., Kessler, R., Scolnic, D., Armstrong, R., Biswas, R., Bogart, J., Chiang, J., Cohen-Tanugi, J., Fouchez, D., Gris, Ph, Heitmann, K., Hložek, R., Jha, S., Kelly, H., Liu, S., Narayan, G., Racine, B., Rykoff, E., Sullivan, M., Walter, C. W., Wood-Vasey, W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 96
container_title The Astrophysical journal
container_volume 934
creator Sánchez, B. O.
Kessler, R.
Scolnic, D.
Armstrong, R.
Biswas, R.
Bogart, J.
Chiang, J.
Cohen-Tanugi, J.
Fouchez, D.
Gris, Ph
Heitmann, K.
Hložek, R.
Jha, S.
Kelly, H.
Liu, S.
Narayan, G.
Racine, B.
Rykoff, E.
Sullivan, M.
Walter, C. W.
Wood-Vasey, W. M.
description The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to process ∼10 6 transient detections per night. For precision measurements of cosmological parameters and rates, it is critical to understand the detection efficiency, magnitude limits, artifact contamination levels, and biases in the selection and photometry. Here we rigorously test the LSST Difference Image Analysis (DIA) pipeline using simulated images from the Rubin Observatory LSST Dark Energy Science Collaboration Data Challenge (DC2) simulation for the Wide-Fast-Deep survey area. DC2 is the first large-scale (300 deg 2 ) image simulation of a transient survey that includes realistic cadence, variable observing conditions, and CCD image artifacts. We analyze ∼15 deg 2 of DC2 over a 5 yr time span in which artificial point sources from Type Ia supernova (SNIa) light curves have been overlaid onto the images. The magnitude limits per filter are u = 23.66 mag, g = 24.69 mag, r = 24.06 mag, i = 23.45 mag, z = 22.54 mag, and y = 21.62 mag. The artifact contamination levels are ∼90% of all detections, corresponding to ∼1000 artifacts deg –2 in g band, and falling to 300 deg –2 in y band. The photometry has biases
doi_str_mv 10.3847/1538-4357/ac7a37
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac7a37</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696122054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-371ee0c169a97bcf9438abd1b8ad203ec1ff4f5f08713875342f43a6f58a6d8b3</originalsourceid><addsrcrecordid>eNp9kV2L1DAUhoMoOI7eexnUmwXrJk3apN4NM_sxMCg4q3h3SNOkm7HTdJNWmX9vu5VdBPHqkDcPD5zzIvSakg9McnFOMyYTzjJxrrRQTDxBi4foKVoQQniSM_H9OXoR42F6pkWxQHf7T1uF1z4efePrE161qjlFF_EXE4emj9gGf8R7dxwa1ZsK7_b7G7w9qtrEj_hy-ts4a00wrTb3uWtr3PvR2MY-KNeOCt_ijQo_8EVrQn16iZ5Z1UTz6s9coq-XFzfr62T3-Wq7Xu0SzYXoEyaoMUTTvFCFKLUtOJOqrGgpVZUSZjS1ltvMEikokyJjPLWcqdxmUuWVLNkSvZ-98ZfphhK64I4qnMArBxv3bQU-1BAHSIlkJBvxNzPuY-8gatcbfat92xrdA5VC5pyO0NkM3armL-H1agdTRhjPOCuynxP7dma74O8GE3s4-CGM542Q5kVO05SM6BKRmdLBxxiMfdBSAlOxMLUIU4swF_u4mPPdo_M_-Lt_4Ko7QME4pFDk0FWW_QZzda9z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696122054</pqid></control><display><type>article</type><title>SNIa Cosmology Analysis Results from Simulated LSST Images: From Difference Imaging to Constraints on Dark Energy</title><source>IOP Publishing Free Content</source><source>SWEPUB Freely available online</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Sánchez, B. O. ; Kessler, R. ; Scolnic, D. ; Armstrong, R. ; Biswas, R. ; Bogart, J. ; Chiang, J. ; Cohen-Tanugi, J. ; Fouchez, D. ; Gris, Ph ; Heitmann, K. ; Hložek, R. ; Jha, S. ; Kelly, H. ; Liu, S. ; Narayan, G. ; Racine, B. ; Rykoff, E. ; Sullivan, M. ; Walter, C. W. ; Wood-Vasey, W. M.</creator><creatorcontrib>Sánchez, B. O. ; Kessler, R. ; Scolnic, D. ; Armstrong, R. ; Biswas, R. ; Bogart, J. ; Chiang, J. ; Cohen-Tanugi, J. ; Fouchez, D. ; Gris, Ph ; Heitmann, K. ; Hložek, R. ; Jha, S. ; Kelly, H. ; Liu, S. ; Narayan, G. ; Racine, B. ; Rykoff, E. ; Sullivan, M. ; Walter, C. W. ; Wood-Vasey, W. M. ; The LSST Dark Energy Science Collaboration (DESC) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to process ∼10 6 transient detections per night. For precision measurements of cosmological parameters and rates, it is critical to understand the detection efficiency, magnitude limits, artifact contamination levels, and biases in the selection and photometry. Here we rigorously test the LSST Difference Image Analysis (DIA) pipeline using simulated images from the Rubin Observatory LSST Dark Energy Science Collaboration Data Challenge (DC2) simulation for the Wide-Fast-Deep survey area. DC2 is the first large-scale (300 deg 2 ) image simulation of a transient survey that includes realistic cadence, variable observing conditions, and CCD image artifacts. We analyze ∼15 deg 2 of DC2 over a 5 yr time span in which artificial point sources from Type Ia supernova (SNIa) light curves have been overlaid onto the images. The magnitude limits per filter are u = 23.66 mag, g = 24.69 mag, r = 24.06 mag, i = 23.45 mag, z = 22.54 mag, and y = 21.62 mag. The artifact contamination levels are ∼90% of all detections, corresponding to ∼1000 artifacts deg –2 in g band, and falling to 300 deg –2 in y band. The photometry has biases &lt;1% for magnitudes 19.5 &lt; m &lt; 23. Our DIA performance on simulated images is similar to that of the Dark Energy Survey difference-imaging pipeline on real images. We also characterize DC2 image properties to produce catalog-level simulations needed for distance bias corrections. We find good agreement between DC2 data and simulations for distributions of signal-to-noise ratio, redshift, and fitted light-curve properties. Applying a realistic SNIa cosmology analysis for redshifts z &lt; 1, we recover the input cosmology parameters to within statistical uncertainties.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac7a37</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Contamination ; Cosmology ; Dark energy ; Image analysis ; Instrumentation and Detectors ; Light curve ; Observational cosmology ; Observatories ; Parameters ; Photometry ; Physics ; Polls &amp; surveys ; Red shift ; Signal to noise ratio ; Simulation ; Sky surveys (astronomy) ; Supernova ; Time domain astronomy ; Transient detection ; Type Ia supernovae</subject><ispartof>The Astrophysical journal, 2022-08, Vol.934 (2), p.96</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-371ee0c169a97bcf9438abd1b8ad203ec1ff4f5f08713875342f43a6f58a6d8b3</citedby><cites>FETCH-LOGICAL-c477t-371ee0c169a97bcf9438abd1b8ad203ec1ff4f5f08713875342f43a6f58a6d8b3</cites><orcidid>0000-0001-7113-1233 ; 0000-0003-3221-0419 ; 0000-0001-5738-8956 ; 0000-0002-7496-3796 ; 0000-0001-9022-4232 ; 0000-0001-9053-4820 ; 0000-0001-5673-0959 ; 0000-0002-5741-7195 ; 0000-0003-1468-8232 ; 0000-0002-0965-7864 ; 0000-0002-1345-1359 ; 0000-0003-2035-2380 ; 0000-0002-4934-5849 ; 0000-0002-4461-2143 ; 0000-0002-4394-6192 ; 0000-0002-6911-1038 ; 0000-0001-9376-3135 ; 0000-0001-8738-6011 ; 0000-0001-6022-0484 ; 0000-0002-8687-0669 ; 0000-0001-8861-3052 ; 0000000187386011 ; 0000000332210419 ; 0000000188613052 ; 0000000243946192 ; 0000000249345849 ; 0000000257417195 ; 0000000213451359 ; 0000000157388956 ; 0000000190534820 ; 0000000193763135 ; 0000000274963796 ; 0000000314688232 ; 0000000171131233 ; 0000000209657864 ; 0000000190224232 ; 0000000156730959 ; 0000000286870669 ; 0000000244612143 ; 0000000160220484 ; 0000000269111038 ; 0000000320352380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac7a37/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,550,776,780,860,881,27903,27904,38869,53846</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03454395$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1878641$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-208305$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez, B. O.</creatorcontrib><creatorcontrib>Kessler, R.</creatorcontrib><creatorcontrib>Scolnic, D.</creatorcontrib><creatorcontrib>Armstrong, R.</creatorcontrib><creatorcontrib>Biswas, R.</creatorcontrib><creatorcontrib>Bogart, J.</creatorcontrib><creatorcontrib>Chiang, J.</creatorcontrib><creatorcontrib>Cohen-Tanugi, J.</creatorcontrib><creatorcontrib>Fouchez, D.</creatorcontrib><creatorcontrib>Gris, Ph</creatorcontrib><creatorcontrib>Heitmann, K.</creatorcontrib><creatorcontrib>Hložek, R.</creatorcontrib><creatorcontrib>Jha, S.</creatorcontrib><creatorcontrib>Kelly, H.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Narayan, G.</creatorcontrib><creatorcontrib>Racine, B.</creatorcontrib><creatorcontrib>Rykoff, E.</creatorcontrib><creatorcontrib>Sullivan, M.</creatorcontrib><creatorcontrib>Walter, C. W.</creatorcontrib><creatorcontrib>Wood-Vasey, W. M.</creatorcontrib><creatorcontrib>The LSST Dark Energy Science Collaboration (DESC)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>SNIa Cosmology Analysis Results from Simulated LSST Images: From Difference Imaging to Constraints on Dark Energy</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to process ∼10 6 transient detections per night. For precision measurements of cosmological parameters and rates, it is critical to understand the detection efficiency, magnitude limits, artifact contamination levels, and biases in the selection and photometry. Here we rigorously test the LSST Difference Image Analysis (DIA) pipeline using simulated images from the Rubin Observatory LSST Dark Energy Science Collaboration Data Challenge (DC2) simulation for the Wide-Fast-Deep survey area. DC2 is the first large-scale (300 deg 2 ) image simulation of a transient survey that includes realistic cadence, variable observing conditions, and CCD image artifacts. We analyze ∼15 deg 2 of DC2 over a 5 yr time span in which artificial point sources from Type Ia supernova (SNIa) light curves have been overlaid onto the images. The magnitude limits per filter are u = 23.66 mag, g = 24.69 mag, r = 24.06 mag, i = 23.45 mag, z = 22.54 mag, and y = 21.62 mag. The artifact contamination levels are ∼90% of all detections, corresponding to ∼1000 artifacts deg –2 in g band, and falling to 300 deg –2 in y band. The photometry has biases &lt;1% for magnitudes 19.5 &lt; m &lt; 23. Our DIA performance on simulated images is similar to that of the Dark Energy Survey difference-imaging pipeline on real images. We also characterize DC2 image properties to produce catalog-level simulations needed for distance bias corrections. We find good agreement between DC2 data and simulations for distributions of signal-to-noise ratio, redshift, and fitted light-curve properties. Applying a realistic SNIa cosmology analysis for redshifts z &lt; 1, we recover the input cosmology parameters to within statistical uncertainties.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Contamination</subject><subject>Cosmology</subject><subject>Dark energy</subject><subject>Image analysis</subject><subject>Instrumentation and Detectors</subject><subject>Light curve</subject><subject>Observational cosmology</subject><subject>Observatories</subject><subject>Parameters</subject><subject>Photometry</subject><subject>Physics</subject><subject>Polls &amp; surveys</subject><subject>Red shift</subject><subject>Signal to noise ratio</subject><subject>Simulation</subject><subject>Sky surveys (astronomy)</subject><subject>Supernova</subject><subject>Time domain astronomy</subject><subject>Transient detection</subject><subject>Type Ia supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>D8T</sourceid><recordid>eNp9kV2L1DAUhoMoOI7eexnUmwXrJk3apN4NM_sxMCg4q3h3SNOkm7HTdJNWmX9vu5VdBPHqkDcPD5zzIvSakg9McnFOMyYTzjJxrrRQTDxBi4foKVoQQniSM_H9OXoR42F6pkWxQHf7T1uF1z4efePrE161qjlFF_EXE4emj9gGf8R7dxwa1ZsK7_b7G7w9qtrEj_hy-ts4a00wrTb3uWtr3PvR2MY-KNeOCt_ijQo_8EVrQn16iZ5Z1UTz6s9coq-XFzfr62T3-Wq7Xu0SzYXoEyaoMUTTvFCFKLUtOJOqrGgpVZUSZjS1ltvMEikokyJjPLWcqdxmUuWVLNkSvZ-98ZfphhK64I4qnMArBxv3bQU-1BAHSIlkJBvxNzPuY-8gatcbfat92xrdA5VC5pyO0NkM3armL-H1agdTRhjPOCuynxP7dma74O8GE3s4-CGM542Q5kVO05SM6BKRmdLBxxiMfdBSAlOxMLUIU4swF_u4mPPdo_M_-Lt_4Ko7QME4pFDk0FWW_QZzda9z</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Sánchez, B. O.</creator><creator>Kessler, R.</creator><creator>Scolnic, D.</creator><creator>Armstrong, R.</creator><creator>Biswas, R.</creator><creator>Bogart, J.</creator><creator>Chiang, J.</creator><creator>Cohen-Tanugi, J.</creator><creator>Fouchez, D.</creator><creator>Gris, Ph</creator><creator>Heitmann, K.</creator><creator>Hložek, R.</creator><creator>Jha, S.</creator><creator>Kelly, H.</creator><creator>Liu, S.</creator><creator>Narayan, G.</creator><creator>Racine, B.</creator><creator>Rykoff, E.</creator><creator>Sullivan, M.</creator><creator>Walter, C. W.</creator><creator>Wood-Vasey, W. M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7113-1233</orcidid><orcidid>https://orcid.org/0000-0003-3221-0419</orcidid><orcidid>https://orcid.org/0000-0001-5738-8956</orcidid><orcidid>https://orcid.org/0000-0002-7496-3796</orcidid><orcidid>https://orcid.org/0000-0001-9022-4232</orcidid><orcidid>https://orcid.org/0000-0001-9053-4820</orcidid><orcidid>https://orcid.org/0000-0001-5673-0959</orcidid><orcidid>https://orcid.org/0000-0002-5741-7195</orcidid><orcidid>https://orcid.org/0000-0003-1468-8232</orcidid><orcidid>https://orcid.org/0000-0002-0965-7864</orcidid><orcidid>https://orcid.org/0000-0002-1345-1359</orcidid><orcidid>https://orcid.org/0000-0003-2035-2380</orcidid><orcidid>https://orcid.org/0000-0002-4934-5849</orcidid><orcidid>https://orcid.org/0000-0002-4461-2143</orcidid><orcidid>https://orcid.org/0000-0002-4394-6192</orcidid><orcidid>https://orcid.org/0000-0002-6911-1038</orcidid><orcidid>https://orcid.org/0000-0001-9376-3135</orcidid><orcidid>https://orcid.org/0000-0001-8738-6011</orcidid><orcidid>https://orcid.org/0000-0001-6022-0484</orcidid><orcidid>https://orcid.org/0000-0002-8687-0669</orcidid><orcidid>https://orcid.org/0000-0001-8861-3052</orcidid><orcidid>https://orcid.org/0000000187386011</orcidid><orcidid>https://orcid.org/0000000332210419</orcidid><orcidid>https://orcid.org/0000000188613052</orcidid><orcidid>https://orcid.org/0000000243946192</orcidid><orcidid>https://orcid.org/0000000249345849</orcidid><orcidid>https://orcid.org/0000000257417195</orcidid><orcidid>https://orcid.org/0000000213451359</orcidid><orcidid>https://orcid.org/0000000157388956</orcidid><orcidid>https://orcid.org/0000000190534820</orcidid><orcidid>https://orcid.org/0000000193763135</orcidid><orcidid>https://orcid.org/0000000274963796</orcidid><orcidid>https://orcid.org/0000000314688232</orcidid><orcidid>https://orcid.org/0000000171131233</orcidid><orcidid>https://orcid.org/0000000209657864</orcidid><orcidid>https://orcid.org/0000000190224232</orcidid><orcidid>https://orcid.org/0000000156730959</orcidid><orcidid>https://orcid.org/0000000286870669</orcidid><orcidid>https://orcid.org/0000000244612143</orcidid><orcidid>https://orcid.org/0000000160220484</orcidid><orcidid>https://orcid.org/0000000269111038</orcidid><orcidid>https://orcid.org/0000000320352380</orcidid></search><sort><creationdate>20220801</creationdate><title>SNIa Cosmology Analysis Results from Simulated LSST Images: From Difference Imaging to Constraints on Dark Energy</title><author>Sánchez, B. O. ; Kessler, R. ; Scolnic, D. ; Armstrong, R. ; Biswas, R. ; Bogart, J. ; Chiang, J. ; Cohen-Tanugi, J. ; Fouchez, D. ; Gris, Ph ; Heitmann, K. ; Hložek, R. ; Jha, S. ; Kelly, H. ; Liu, S. ; Narayan, G. ; Racine, B. ; Rykoff, E. ; Sullivan, M. ; Walter, C. W. ; Wood-Vasey, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-371ee0c169a97bcf9438abd1b8ad203ec1ff4f5f08713875342f43a6f58a6d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Contamination</topic><topic>Cosmology</topic><topic>Dark energy</topic><topic>Image analysis</topic><topic>Instrumentation and Detectors</topic><topic>Light curve</topic><topic>Observational cosmology</topic><topic>Observatories</topic><topic>Parameters</topic><topic>Photometry</topic><topic>Physics</topic><topic>Polls &amp; surveys</topic><topic>Red shift</topic><topic>Signal to noise ratio</topic><topic>Simulation</topic><topic>Sky surveys (astronomy)</topic><topic>Supernova</topic><topic>Time domain astronomy</topic><topic>Transient detection</topic><topic>Type Ia supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez, B. O.</creatorcontrib><creatorcontrib>Kessler, R.</creatorcontrib><creatorcontrib>Scolnic, D.</creatorcontrib><creatorcontrib>Armstrong, R.</creatorcontrib><creatorcontrib>Biswas, R.</creatorcontrib><creatorcontrib>Bogart, J.</creatorcontrib><creatorcontrib>Chiang, J.</creatorcontrib><creatorcontrib>Cohen-Tanugi, J.</creatorcontrib><creatorcontrib>Fouchez, D.</creatorcontrib><creatorcontrib>Gris, Ph</creatorcontrib><creatorcontrib>Heitmann, K.</creatorcontrib><creatorcontrib>Hložek, R.</creatorcontrib><creatorcontrib>Jha, S.</creatorcontrib><creatorcontrib>Kelly, H.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Narayan, G.</creatorcontrib><creatorcontrib>Racine, B.</creatorcontrib><creatorcontrib>Rykoff, E.</creatorcontrib><creatorcontrib>Sullivan, M.</creatorcontrib><creatorcontrib>Walter, C. W.</creatorcontrib><creatorcontrib>Wood-Vasey, W. M.</creatorcontrib><creatorcontrib>The LSST Dark Energy Science Collaboration (DESC)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez, B. O.</au><au>Kessler, R.</au><au>Scolnic, D.</au><au>Armstrong, R.</au><au>Biswas, R.</au><au>Bogart, J.</au><au>Chiang, J.</au><au>Cohen-Tanugi, J.</au><au>Fouchez, D.</au><au>Gris, Ph</au><au>Heitmann, K.</au><au>Hložek, R.</au><au>Jha, S.</au><au>Kelly, H.</au><au>Liu, S.</au><au>Narayan, G.</au><au>Racine, B.</au><au>Rykoff, E.</au><au>Sullivan, M.</au><au>Walter, C. W.</au><au>Wood-Vasey, W. M.</au><aucorp>The LSST Dark Energy Science Collaboration (DESC)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SNIa Cosmology Analysis Results from Simulated LSST Images: From Difference Imaging to Constraints on Dark Energy</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>934</volume><issue>2</issue><spage>96</spage><pages>96-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to process ∼10 6 transient detections per night. For precision measurements of cosmological parameters and rates, it is critical to understand the detection efficiency, magnitude limits, artifact contamination levels, and biases in the selection and photometry. Here we rigorously test the LSST Difference Image Analysis (DIA) pipeline using simulated images from the Rubin Observatory LSST Dark Energy Science Collaboration Data Challenge (DC2) simulation for the Wide-Fast-Deep survey area. DC2 is the first large-scale (300 deg 2 ) image simulation of a transient survey that includes realistic cadence, variable observing conditions, and CCD image artifacts. We analyze ∼15 deg 2 of DC2 over a 5 yr time span in which artificial point sources from Type Ia supernova (SNIa) light curves have been overlaid onto the images. The magnitude limits per filter are u = 23.66 mag, g = 24.69 mag, r = 24.06 mag, i = 23.45 mag, z = 22.54 mag, and y = 21.62 mag. The artifact contamination levels are ∼90% of all detections, corresponding to ∼1000 artifacts deg –2 in g band, and falling to 300 deg –2 in y band. The photometry has biases &lt;1% for magnitudes 19.5 &lt; m &lt; 23. Our DIA performance on simulated images is similar to that of the Dark Energy Survey difference-imaging pipeline on real images. We also characterize DC2 image properties to produce catalog-level simulations needed for distance bias corrections. We find good agreement between DC2 data and simulations for distributions of signal-to-noise ratio, redshift, and fitted light-curve properties. Applying a realistic SNIa cosmology analysis for redshifts z &lt; 1, we recover the input cosmology parameters to within statistical uncertainties.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac7a37</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7113-1233</orcidid><orcidid>https://orcid.org/0000-0003-3221-0419</orcidid><orcidid>https://orcid.org/0000-0001-5738-8956</orcidid><orcidid>https://orcid.org/0000-0002-7496-3796</orcidid><orcidid>https://orcid.org/0000-0001-9022-4232</orcidid><orcidid>https://orcid.org/0000-0001-9053-4820</orcidid><orcidid>https://orcid.org/0000-0001-5673-0959</orcidid><orcidid>https://orcid.org/0000-0002-5741-7195</orcidid><orcidid>https://orcid.org/0000-0003-1468-8232</orcidid><orcidid>https://orcid.org/0000-0002-0965-7864</orcidid><orcidid>https://orcid.org/0000-0002-1345-1359</orcidid><orcidid>https://orcid.org/0000-0003-2035-2380</orcidid><orcidid>https://orcid.org/0000-0002-4934-5849</orcidid><orcidid>https://orcid.org/0000-0002-4461-2143</orcidid><orcidid>https://orcid.org/0000-0002-4394-6192</orcidid><orcidid>https://orcid.org/0000-0002-6911-1038</orcidid><orcidid>https://orcid.org/0000-0001-9376-3135</orcidid><orcidid>https://orcid.org/0000-0001-8738-6011</orcidid><orcidid>https://orcid.org/0000-0001-6022-0484</orcidid><orcidid>https://orcid.org/0000-0002-8687-0669</orcidid><orcidid>https://orcid.org/0000-0001-8861-3052</orcidid><orcidid>https://orcid.org/0000000187386011</orcidid><orcidid>https://orcid.org/0000000332210419</orcidid><orcidid>https://orcid.org/0000000188613052</orcidid><orcidid>https://orcid.org/0000000243946192</orcidid><orcidid>https://orcid.org/0000000249345849</orcidid><orcidid>https://orcid.org/0000000257417195</orcidid><orcidid>https://orcid.org/0000000213451359</orcidid><orcidid>https://orcid.org/0000000157388956</orcidid><orcidid>https://orcid.org/0000000190534820</orcidid><orcidid>https://orcid.org/0000000193763135</orcidid><orcidid>https://orcid.org/0000000274963796</orcidid><orcidid>https://orcid.org/0000000314688232</orcidid><orcidid>https://orcid.org/0000000171131233</orcidid><orcidid>https://orcid.org/0000000209657864</orcidid><orcidid>https://orcid.org/0000000190224232</orcidid><orcidid>https://orcid.org/0000000156730959</orcidid><orcidid>https://orcid.org/0000000286870669</orcidid><orcidid>https://orcid.org/0000000244612143</orcidid><orcidid>https://orcid.org/0000000160220484</orcidid><orcidid>https://orcid.org/0000000269111038</orcidid><orcidid>https://orcid.org/0000000320352380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-08, Vol.934 (2), p.96
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac7a37
source IOP Publishing Free Content; SWEPUB Freely available online; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ASTRONOMY AND ASTROPHYSICS
Astrophysics
Contamination
Cosmology
Dark energy
Image analysis
Instrumentation and Detectors
Light curve
Observational cosmology
Observatories
Parameters
Photometry
Physics
Polls & surveys
Red shift
Signal to noise ratio
Simulation
Sky surveys (astronomy)
Supernova
Time domain astronomy
Transient detection
Type Ia supernovae
title SNIa Cosmology Analysis Results from Simulated LSST Images: From Difference Imaging to Constraints on Dark Energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SNIa%20Cosmology%20Analysis%20Results%20from%20Simulated%20LSST%20Images:%20From%20Difference%20Imaging%20to%20Constraints%20on%20Dark%20Energy&rft.jtitle=The%20Astrophysical%20journal&rft.au=S%C3%A1nchez,%20B.%20O.&rft.aucorp=The%20LSST%20Dark%20Energy%20Science%20Collaboration%20(DESC)&rft.date=2022-08-01&rft.volume=934&rft.issue=2&rft.spage=96&rft.pages=96-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac7a37&rft_dat=%3Cproquest_cross%3E2696122054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696122054&rft_id=info:pmid/&rfr_iscdi=true