Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning
In neutral hydrogen (H i ) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-07, Vol.934 (1), p.83 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 83 |
container_title | The Astrophysical journal |
container_volume | 934 |
creator | Ni, Shulei Li, Yichao Gao, Li-Yang Zhang, Xin |
description | In neutral hydrogen (H
i
) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net algorithm, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope’s primary beam. We consider two beam models, i.e., the Gaussian beam and Cosine beam models. The traditional principal component analysis (PCA) method is employed as a preprocessing step for the U-Net method to reduce the map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. To show how well the PCA and U-Net methods can recover the H
i
signal, we also derive the H
i
angular power spectrum and H
i
2D power spectrum after performing foreground subtraction. It is found that in the case of Gaussian beam, the concordance with the original H
i
map using U-Net is better than that using PCA by 27.4%, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by 144.8%. Therefore, the U-Net–based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering H
i
power spectrum for future H
i
IM experiments. |
doi_str_mv | 10.3847/1538-4357/ac7a34 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac7a34</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695512785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-30ebd602536c22cef617355fe4be083472b38a479fbf73562ad23689ed1a8c8f3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQa8WjdN2iY9-rG6wvoBq-CtpOlkzbKb1DRV-t_bUtGTp-HNe_MGfgidxuSCiYTP4pSJKGEpn0nFJUv20OR3tY8mhJAkyhh_O0RHTbMZJM3zCermW7MzVgZj1_jZm530Hb4CucNzrUEFbCy-dR7W3rW2wqu2DF6qYJzFTuNHaHu5xYuu8m4NFt_bALYxocMPsq6HzlXrP6HDXya84xuAGi9Bets7x-hAy20DJz9zil5v5y_Xi2j5dHd_fbmMFBUkRIxAWWWEpixTlCrQWcxZmmpISiCCJZyWTMiE57rUvZFRWVGWiRyqWAolNJuis7G39u6jhSYUG9d6278saJanaUy5SPsUGVPKu6bxoIt6hFHEpBgAFwPNYqBZjID7k_PxxLj6r_Pf-DdfrX2X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695512785</pqid></control><display><type>article</type><title>Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ni, Shulei ; Li, Yichao ; Gao, Li-Yang ; Zhang, Xin</creator><creatorcontrib>Ni, Shulei ; Li, Yichao ; Gao, Li-Yang ; Zhang, Xin</creatorcontrib><description>In neutral hydrogen (H
i
) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net algorithm, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope’s primary beam. We consider two beam models, i.e., the Gaussian beam and Cosine beam models. The traditional principal component analysis (PCA) method is employed as a preprocessing step for the U-Net method to reduce the map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. To show how well the PCA and U-Net methods can recover the H
i
signal, we also derive the H
i
angular power spectrum and H
i
2D power spectrum after performing foreground subtraction. It is found that in the case of Gaussian beam, the concordance with the original H
i
map using U-Net is better than that using PCA by 27.4%, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by 144.8%. Therefore, the U-Net–based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering H
i
power spectrum for future H
i
IM experiments.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac7a34</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrophysics ; Deep learning ; Gaussian beams (optics) ; H I line emission ; Hydrogen ; Large-scale structure of the universe ; Machine learning ; Mapping ; Neural networks ; Observational cosmology ; Principal components analysis ; Radio telescopes ; Sky surveys ; Subtraction ; Telescopes</subject><ispartof>The Astrophysical journal, 2022-07, Vol.934 (1), p.83</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-30ebd602536c22cef617355fe4be083472b38a479fbf73562ad23689ed1a8c8f3</citedby><cites>FETCH-LOGICAL-c280t-30ebd602536c22cef617355fe4be083472b38a479fbf73562ad23689ed1a8c8f3</cites><orcidid>0000-0002-5386-1627 ; 0000-0002-6029-1933 ; 0000-0003-1962-2013 ; 0000-0001-5469-5408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac7a34/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Ni, Shulei</creatorcontrib><creatorcontrib>Li, Yichao</creatorcontrib><creatorcontrib>Gao, Li-Yang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In neutral hydrogen (H
i
) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net algorithm, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope’s primary beam. We consider two beam models, i.e., the Gaussian beam and Cosine beam models. The traditional principal component analysis (PCA) method is employed as a preprocessing step for the U-Net method to reduce the map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. To show how well the PCA and U-Net methods can recover the H
i
signal, we also derive the H
i
angular power spectrum and H
i
2D power spectrum after performing foreground subtraction. It is found that in the case of Gaussian beam, the concordance with the original H
i
map using U-Net is better than that using PCA by 27.4%, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by 144.8%. Therefore, the U-Net–based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering H
i
power spectrum for future H
i
IM experiments.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Deep learning</subject><subject>Gaussian beams (optics)</subject><subject>H I line emission</subject><subject>Hydrogen</subject><subject>Large-scale structure of the universe</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>Observational cosmology</subject><subject>Principal components analysis</subject><subject>Radio telescopes</subject><subject>Sky surveys</subject><subject>Subtraction</subject><subject>Telescopes</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LxDAQxYMouK7ePQa8WjdN2iY9-rG6wvoBq-CtpOlkzbKb1DRV-t_bUtGTp-HNe_MGfgidxuSCiYTP4pSJKGEpn0nFJUv20OR3tY8mhJAkyhh_O0RHTbMZJM3zCermW7MzVgZj1_jZm530Hb4CucNzrUEFbCy-dR7W3rW2wqu2DF6qYJzFTuNHaHu5xYuu8m4NFt_bALYxocMPsq6HzlXrP6HDXya84xuAGi9Bets7x-hAy20DJz9zil5v5y_Xi2j5dHd_fbmMFBUkRIxAWWWEpixTlCrQWcxZmmpISiCCJZyWTMiE57rUvZFRWVGWiRyqWAolNJuis7G39u6jhSYUG9d6278saJanaUy5SPsUGVPKu6bxoIt6hFHEpBgAFwPNYqBZjID7k_PxxLj6r_Pf-DdfrX2X</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ni, Shulei</creator><creator>Li, Yichao</creator><creator>Gao, Li-Yang</creator><creator>Zhang, Xin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5386-1627</orcidid><orcidid>https://orcid.org/0000-0002-6029-1933</orcidid><orcidid>https://orcid.org/0000-0003-1962-2013</orcidid><orcidid>https://orcid.org/0000-0001-5469-5408</orcidid></search><sort><creationdate>20220701</creationdate><title>Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning</title><author>Ni, Shulei ; Li, Yichao ; Gao, Li-Yang ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-30ebd602536c22cef617355fe4be083472b38a479fbf73562ad23689ed1a8c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Deep learning</topic><topic>Gaussian beams (optics)</topic><topic>H I line emission</topic><topic>Hydrogen</topic><topic>Large-scale structure of the universe</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>Observational cosmology</topic><topic>Principal components analysis</topic><topic>Radio telescopes</topic><topic>Sky surveys</topic><topic>Subtraction</topic><topic>Telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Shulei</creatorcontrib><creatorcontrib>Li, Yichao</creatorcontrib><creatorcontrib>Gao, Li-Yang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Shulei</au><au>Li, Yichao</au><au>Gao, Li-Yang</au><au>Zhang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>934</volume><issue>1</issue><spage>83</spage><pages>83-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In neutral hydrogen (H
i
) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net algorithm, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope’s primary beam. We consider two beam models, i.e., the Gaussian beam and Cosine beam models. The traditional principal component analysis (PCA) method is employed as a preprocessing step for the U-Net method to reduce the map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. To show how well the PCA and U-Net methods can recover the H
i
signal, we also derive the H
i
angular power spectrum and H
i
2D power spectrum after performing foreground subtraction. It is found that in the case of Gaussian beam, the concordance with the original H
i
map using U-Net is better than that using PCA by 27.4%, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by 144.8%. Therefore, the U-Net–based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering H
i
power spectrum for future H
i
IM experiments.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac7a34</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5386-1627</orcidid><orcidid>https://orcid.org/0000-0002-6029-1933</orcidid><orcidid>https://orcid.org/0000-0003-1962-2013</orcidid><orcidid>https://orcid.org/0000-0001-5469-5408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-07, Vol.934 (1), p.83 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ac7a34 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Astrophysics Deep learning Gaussian beams (optics) H I line emission Hydrogen Large-scale structure of the universe Machine learning Mapping Neural networks Observational cosmology Principal components analysis Radio telescopes Sky surveys Subtraction Telescopes |
title | Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eliminating%20Primary%20Beam%20Effect%20in%20Foreground%20Subtraction%20of%20Neutral%20Hydrogen%20Intensity%20Mapping%20Survey%20with%20Deep%20Learning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ni,%20Shulei&rft.date=2022-07-01&rft.volume=934&rft.issue=1&rft.spage=83&rft.pages=83-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac7a34&rft_dat=%3Cproquest_cross%3E2695512785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695512785&rft_id=info:pmid/&rfr_iscdi=true |