Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning

In neutral hydrogen (H i ) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-07, Vol.934 (1), p.83
Hauptverfasser: Ni, Shulei, Li, Yichao, Gao, Li-Yang, Zhang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 83
container_title The Astrophysical journal
container_volume 934
creator Ni, Shulei
Li, Yichao
Gao, Li-Yang
Zhang, Xin
description In neutral hydrogen (H i ) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net algorithm, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope’s primary beam. We consider two beam models, i.e., the Gaussian beam and Cosine beam models. The traditional principal component analysis (PCA) method is employed as a preprocessing step for the U-Net method to reduce the map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. To show how well the PCA and U-Net methods can recover the H i signal, we also derive the H i angular power spectrum and H i 2D power spectrum after performing foreground subtraction. It is found that in the case of Gaussian beam, the concordance with the original H i map using U-Net is better than that using PCA by 27.4%, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by 144.8%. Therefore, the U-Net–based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering H i power spectrum for future H i IM experiments.
doi_str_mv 10.3847/1538-4357/ac7a34
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac7a34</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695512785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-30ebd602536c22cef617355fe4be083472b38a479fbf73562ad23689ed1a8c8f3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQa8WjdN2iY9-rG6wvoBq-CtpOlkzbKb1DRV-t_bUtGTp-HNe_MGfgidxuSCiYTP4pSJKGEpn0nFJUv20OR3tY8mhJAkyhh_O0RHTbMZJM3zCermW7MzVgZj1_jZm530Hb4CucNzrUEFbCy-dR7W3rW2wqu2DF6qYJzFTuNHaHu5xYuu8m4NFt_bALYxocMPsq6HzlXrP6HDXya84xuAGi9Bets7x-hAy20DJz9zil5v5y_Xi2j5dHd_fbmMFBUkRIxAWWWEpixTlCrQWcxZmmpISiCCJZyWTMiE57rUvZFRWVGWiRyqWAolNJuis7G39u6jhSYUG9d6278saJanaUy5SPsUGVPKu6bxoIt6hFHEpBgAFwPNYqBZjID7k_PxxLj6r_Pf-DdfrX2X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695512785</pqid></control><display><type>article</type><title>Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ni, Shulei ; Li, Yichao ; Gao, Li-Yang ; Zhang, Xin</creator><creatorcontrib>Ni, Shulei ; Li, Yichao ; Gao, Li-Yang ; Zhang, Xin</creatorcontrib><description>In neutral hydrogen (H i ) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net algorithm, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope’s primary beam. We consider two beam models, i.e., the Gaussian beam and Cosine beam models. The traditional principal component analysis (PCA) method is employed as a preprocessing step for the U-Net method to reduce the map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. To show how well the PCA and U-Net methods can recover the H i signal, we also derive the H i angular power spectrum and H i 2D power spectrum after performing foreground subtraction. It is found that in the case of Gaussian beam, the concordance with the original H i map using U-Net is better than that using PCA by 27.4%, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by 144.8%. Therefore, the U-Net–based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering H i power spectrum for future H i IM experiments.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac7a34</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrophysics ; Deep learning ; Gaussian beams (optics) ; H I line emission ; Hydrogen ; Large-scale structure of the universe ; Machine learning ; Mapping ; Neural networks ; Observational cosmology ; Principal components analysis ; Radio telescopes ; Sky surveys ; Subtraction ; Telescopes</subject><ispartof>The Astrophysical journal, 2022-07, Vol.934 (1), p.83</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-30ebd602536c22cef617355fe4be083472b38a479fbf73562ad23689ed1a8c8f3</citedby><cites>FETCH-LOGICAL-c280t-30ebd602536c22cef617355fe4be083472b38a479fbf73562ad23689ed1a8c8f3</cites><orcidid>0000-0002-5386-1627 ; 0000-0002-6029-1933 ; 0000-0003-1962-2013 ; 0000-0001-5469-5408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac7a34/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Ni, Shulei</creatorcontrib><creatorcontrib>Li, Yichao</creatorcontrib><creatorcontrib>Gao, Li-Yang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In neutral hydrogen (H i ) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net algorithm, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope’s primary beam. We consider two beam models, i.e., the Gaussian beam and Cosine beam models. The traditional principal component analysis (PCA) method is employed as a preprocessing step for the U-Net method to reduce the map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. To show how well the PCA and U-Net methods can recover the H i signal, we also derive the H i angular power spectrum and H i 2D power spectrum after performing foreground subtraction. It is found that in the case of Gaussian beam, the concordance with the original H i map using U-Net is better than that using PCA by 27.4%, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by 144.8%. Therefore, the U-Net–based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering H i power spectrum for future H i IM experiments.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Deep learning</subject><subject>Gaussian beams (optics)</subject><subject>H I line emission</subject><subject>Hydrogen</subject><subject>Large-scale structure of the universe</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>Observational cosmology</subject><subject>Principal components analysis</subject><subject>Radio telescopes</subject><subject>Sky surveys</subject><subject>Subtraction</subject><subject>Telescopes</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LxDAQxYMouK7ePQa8WjdN2iY9-rG6wvoBq-CtpOlkzbKb1DRV-t_bUtGTp-HNe_MGfgidxuSCiYTP4pSJKGEpn0nFJUv20OR3tY8mhJAkyhh_O0RHTbMZJM3zCermW7MzVgZj1_jZm530Hb4CucNzrUEFbCy-dR7W3rW2wqu2DF6qYJzFTuNHaHu5xYuu8m4NFt_bALYxocMPsq6HzlXrP6HDXya84xuAGi9Bets7x-hAy20DJz9zil5v5y_Xi2j5dHd_fbmMFBUkRIxAWWWEpixTlCrQWcxZmmpISiCCJZyWTMiE57rUvZFRWVGWiRyqWAolNJuis7G39u6jhSYUG9d6278saJanaUy5SPsUGVPKu6bxoIt6hFHEpBgAFwPNYqBZjID7k_PxxLj6r_Pf-DdfrX2X</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ni, Shulei</creator><creator>Li, Yichao</creator><creator>Gao, Li-Yang</creator><creator>Zhang, Xin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5386-1627</orcidid><orcidid>https://orcid.org/0000-0002-6029-1933</orcidid><orcidid>https://orcid.org/0000-0003-1962-2013</orcidid><orcidid>https://orcid.org/0000-0001-5469-5408</orcidid></search><sort><creationdate>20220701</creationdate><title>Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning</title><author>Ni, Shulei ; Li, Yichao ; Gao, Li-Yang ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-30ebd602536c22cef617355fe4be083472b38a479fbf73562ad23689ed1a8c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Deep learning</topic><topic>Gaussian beams (optics)</topic><topic>H I line emission</topic><topic>Hydrogen</topic><topic>Large-scale structure of the universe</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>Observational cosmology</topic><topic>Principal components analysis</topic><topic>Radio telescopes</topic><topic>Sky surveys</topic><topic>Subtraction</topic><topic>Telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Shulei</creatorcontrib><creatorcontrib>Li, Yichao</creatorcontrib><creatorcontrib>Gao, Li-Yang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Shulei</au><au>Li, Yichao</au><au>Gao, Li-Yang</au><au>Zhang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>934</volume><issue>1</issue><spage>83</spage><pages>83-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In neutral hydrogen (H i ) intensity mapping (IM) survey, foreground contamination on cosmological signal is extremely severe, and systematic effects caused by radio telescopes further aggravate the difficulties in subtracting foreground. We investigate whether the deep-learning method, the 3D U-Net algorithm, can play a crucial role in foreground subtraction when considering the systematic effect caused by the telescope’s primary beam. We consider two beam models, i.e., the Gaussian beam and Cosine beam models. The traditional principal component analysis (PCA) method is employed as a preprocessing step for the U-Net method to reduce the map dynamic range. We find that in the case of the Gaussian beam, the PCA method can effectively clean the foreground. However, the PCA method cannot handle the systematic effect induced by the Cosine beam, and the additional U-Net method can improve the result significantly. To show how well the PCA and U-Net methods can recover the H i signal, we also derive the H i angular power spectrum and H i 2D power spectrum after performing foreground subtraction. It is found that in the case of Gaussian beam, the concordance with the original H i map using U-Net is better than that using PCA by 27.4%, and in the case of Cosine beam, the concordance using U-Net is better than that using PCA by 144.8%. Therefore, the U-Net–based foreground subtraction can efficiently eliminate the telescope primary beam effect and shed new light on recovering H i power spectrum for future H i IM experiments.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac7a34</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5386-1627</orcidid><orcidid>https://orcid.org/0000-0002-6029-1933</orcidid><orcidid>https://orcid.org/0000-0003-1962-2013</orcidid><orcidid>https://orcid.org/0000-0001-5469-5408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-07, Vol.934 (1), p.83
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac7a34
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Astrophysics
Deep learning
Gaussian beams (optics)
H I line emission
Hydrogen
Large-scale structure of the universe
Machine learning
Mapping
Neural networks
Observational cosmology
Principal components analysis
Radio telescopes
Sky surveys
Subtraction
Telescopes
title Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eliminating%20Primary%20Beam%20Effect%20in%20Foreground%20Subtraction%20of%20Neutral%20Hydrogen%20Intensity%20Mapping%20Survey%20with%20Deep%20Learning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ni,%20Shulei&rft.date=2022-07-01&rft.volume=934&rft.issue=1&rft.spage=83&rft.pages=83-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac7a34&rft_dat=%3Cproquest_cross%3E2695512785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695512785&rft_id=info:pmid/&rfr_iscdi=true