NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage

We report high-precision X-ray monitoring observations in the 0.4–10 keV band of the luminous, long-period colliding wind binary Eta Carinae, up to and through its most recent X-ray minimum/periastron passage in 2020 February. Eta Carinae reached its observed maximum X-ray flux on 2020 January 7, at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-07, Vol.933 (2), p.136
Hauptverfasser: Espinoza-Galeas, David, Corcoran, M. F., Hamaguchi, K., Russell, C. M. P., Gull, T. R., Moffat, A. F. J., Richardson, N. D., Weigelt, G., Hillier, D. John, Damineli, Augusto, Stevens, Ian R., Madura, Thomas, Gendreau, K., Arzoumanian, Z., Navarete, Felipe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 136
container_title The Astrophysical journal
container_volume 933
creator Espinoza-Galeas, David
Corcoran, M. F.
Hamaguchi, K.
Russell, C. M. P.
Gull, T. R.
Moffat, A. F. J.
Richardson, N. D.
Weigelt, G.
Hillier, D. John
Damineli, Augusto
Stevens, Ian R.
Madura, Thomas
Gendreau, K.
Arzoumanian, Z.
Navarete, Felipe
description We report high-precision X-ray monitoring observations in the 0.4–10 keV band of the luminous, long-period colliding wind binary Eta Carinae, up to and through its most recent X-ray minimum/periastron passage in 2020 February. Eta Carinae reached its observed maximum X-ray flux on 2020 January 7, at a flux level of 3.30 ×10 −10 ergs s −1 cm −2 , followed by a rapid plunge to its observed minimum flux, 0.03 × 10 −10 ergs s −1 cm −2 , near 2020 February 17. The NICER observations show an X-ray recovery from the minimum of only ∼16 days, the shortest X-ray minimum observed so far. We provide new constraints for the “deep” and “shallow” minimum intervals. Variations in the characteristic X-ray temperatures of the hottest observed X-ray emission indicate that the apex of the wind–wind “bow shock” enters the companion’s wind acceleration zone about 81 days before the start of the X-ray minimum. There is a steplike increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During the recovery and after, the column density shows a smooth decline, which agrees with previous N H measurements made by Swift at the same orbital phase, indicating that the changes in the mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of ∼10 41 ergs s −1 near the time of the “Great Eruption.”
doi_str_mv 10.3847/1538-4357/ac69ce
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac69ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2686926177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-495b164023b810c62fe9cb54f7285331a8783f2ff02a7582673bbe2b230fd7f93</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKt3jwGvrs3H5mOPslQtqK1FobeQpEnZopuapEL_vbus6MnTMC8z88IDwCVGN1SWYoIZlUVJmZhoyyvrjsDo93QMRgihsuBUrE7BWUrb3pKqGoGX51k9XcJVsdQHODfJxS-dm9AmGDycZg1rHZtWO7jed7qBs5zgU0gZLp11bYYLFxudcgwtXOiU9MadgxOv35O7-NExeLubvtYPxeP8flbfPhaWMpSLsmIG8xIRaiRGlhPvKmtY6QWRjFKspZDUE-8R0YJJwgU1xhFDKPJr4Ss6BlfD7i6Gz71LWW3DPrbdS0W45BXhWIguhYaUjSGl6LzaxeZDx4PCSPXgVE9J9ZTUAK6rXA-VJuz-Nv-NfwPG021d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686926177</pqid></control><display><type>article</type><title>NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Espinoza-Galeas, David ; Corcoran, M. F. ; Hamaguchi, K. ; Russell, C. M. P. ; Gull, T. R. ; Moffat, A. F. J. ; Richardson, N. D. ; Weigelt, G. ; Hillier, D. John ; Damineli, Augusto ; Stevens, Ian R. ; Madura, Thomas ; Gendreau, K. ; Arzoumanian, Z. ; Navarete, Felipe</creator><creatorcontrib>Espinoza-Galeas, David ; Corcoran, M. F. ; Hamaguchi, K. ; Russell, C. M. P. ; Gull, T. R. ; Moffat, A. F. J. ; Richardson, N. D. ; Weigelt, G. ; Hillier, D. John ; Damineli, Augusto ; Stevens, Ian R. ; Madura, Thomas ; Gendreau, K. ; Arzoumanian, Z. ; Navarete, Felipe</creatorcontrib><description>We report high-precision X-ray monitoring observations in the 0.4–10 keV band of the luminous, long-period colliding wind binary Eta Carinae, up to and through its most recent X-ray minimum/periastron passage in 2020 February. Eta Carinae reached its observed maximum X-ray flux on 2020 January 7, at a flux level of 3.30 ×10 −10 ergs s −1 cm −2 , followed by a rapid plunge to its observed minimum flux, 0.03 × 10 −10 ergs s −1 cm −2 , near 2020 February 17. The NICER observations show an X-ray recovery from the minimum of only ∼16 days, the shortest X-ray minimum observed so far. We provide new constraints for the “deep” and “shallow” minimum intervals. Variations in the characteristic X-ray temperatures of the hottest observed X-ray emission indicate that the apex of the wind–wind “bow shock” enters the companion’s wind acceleration zone about 81 days before the start of the X-ray minimum. There is a steplike increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During the recovery and after, the column density shows a smooth decline, which agrees with previous N H measurements made by Swift at the same orbital phase, indicating that the changes in the mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of ∼10 41 ergs s −1 near the time of the “Great Eruption.”</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac69ce</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Apexes ; Astrophysics ; Clumps ; Companion stars ; Density ; Ejecta ; Emission ; Fluctuations ; Luminosity ; Recovery ; Stellar evolution ; Stellar winds ; Wind ; X-ray astronomy ; X-ray emissions ; X-ray fluxes ; X-ray sources ; X-rays</subject><ispartof>The Astrophysical journal, 2022-07, Vol.933 (2), p.136</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-495b164023b810c62fe9cb54f7285331a8783f2ff02a7582673bbe2b230fd7f93</citedby><cites>FETCH-LOGICAL-c350t-495b164023b810c62fe9cb54f7285331a8783f2ff02a7582673bbe2b230fd7f93</cites><orcidid>0000-0001-7515-2779 ; 0000-0003-2971-0439 ; 0000-0002-2806-9339 ; 0000-0002-0284-0578 ; 0000-0002-7762-3172 ; 0000-0001-9754-2233 ; 0000-0001-7673-4340 ; 0000-0002-6851-5380 ; 0000-0002-7978-2994 ; 0000-0001-7115-2819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac69ce/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Espinoza-Galeas, David</creatorcontrib><creatorcontrib>Corcoran, M. F.</creatorcontrib><creatorcontrib>Hamaguchi, K.</creatorcontrib><creatorcontrib>Russell, C. M. P.</creatorcontrib><creatorcontrib>Gull, T. R.</creatorcontrib><creatorcontrib>Moffat, A. F. J.</creatorcontrib><creatorcontrib>Richardson, N. D.</creatorcontrib><creatorcontrib>Weigelt, G.</creatorcontrib><creatorcontrib>Hillier, D. John</creatorcontrib><creatorcontrib>Damineli, Augusto</creatorcontrib><creatorcontrib>Stevens, Ian R.</creatorcontrib><creatorcontrib>Madura, Thomas</creatorcontrib><creatorcontrib>Gendreau, K.</creatorcontrib><creatorcontrib>Arzoumanian, Z.</creatorcontrib><creatorcontrib>Navarete, Felipe</creatorcontrib><title>NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We report high-precision X-ray monitoring observations in the 0.4–10 keV band of the luminous, long-period colliding wind binary Eta Carinae, up to and through its most recent X-ray minimum/periastron passage in 2020 February. Eta Carinae reached its observed maximum X-ray flux on 2020 January 7, at a flux level of 3.30 ×10 −10 ergs s −1 cm −2 , followed by a rapid plunge to its observed minimum flux, 0.03 × 10 −10 ergs s −1 cm −2 , near 2020 February 17. The NICER observations show an X-ray recovery from the minimum of only ∼16 days, the shortest X-ray minimum observed so far. We provide new constraints for the “deep” and “shallow” minimum intervals. Variations in the characteristic X-ray temperatures of the hottest observed X-ray emission indicate that the apex of the wind–wind “bow shock” enters the companion’s wind acceleration zone about 81 days before the start of the X-ray minimum. There is a steplike increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During the recovery and after, the column density shows a smooth decline, which agrees with previous N H measurements made by Swift at the same orbital phase, indicating that the changes in the mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of ∼10 41 ergs s −1 near the time of the “Great Eruption.”</description><subject>Apexes</subject><subject>Astrophysics</subject><subject>Clumps</subject><subject>Companion stars</subject><subject>Density</subject><subject>Ejecta</subject><subject>Emission</subject><subject>Fluctuations</subject><subject>Luminosity</subject><subject>Recovery</subject><subject>Stellar evolution</subject><subject>Stellar winds</subject><subject>Wind</subject><subject>X-ray astronomy</subject><subject>X-ray emissions</subject><subject>X-ray fluxes</subject><subject>X-ray sources</subject><subject>X-rays</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1LAzEYhIMoWKt3jwGvrs3H5mOPslQtqK1FobeQpEnZopuapEL_vbus6MnTMC8z88IDwCVGN1SWYoIZlUVJmZhoyyvrjsDo93QMRgihsuBUrE7BWUrb3pKqGoGX51k9XcJVsdQHODfJxS-dm9AmGDycZg1rHZtWO7jed7qBs5zgU0gZLp11bYYLFxudcgwtXOiU9MadgxOv35O7-NExeLubvtYPxeP8flbfPhaWMpSLsmIG8xIRaiRGlhPvKmtY6QWRjFKspZDUE-8R0YJJwgU1xhFDKPJr4Ss6BlfD7i6Gz71LWW3DPrbdS0W45BXhWIguhYaUjSGl6LzaxeZDx4PCSPXgVE9J9ZTUAK6rXA-VJuz-Nv-NfwPG021d</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Espinoza-Galeas, David</creator><creator>Corcoran, M. F.</creator><creator>Hamaguchi, K.</creator><creator>Russell, C. M. P.</creator><creator>Gull, T. R.</creator><creator>Moffat, A. F. J.</creator><creator>Richardson, N. D.</creator><creator>Weigelt, G.</creator><creator>Hillier, D. John</creator><creator>Damineli, Augusto</creator><creator>Stevens, Ian R.</creator><creator>Madura, Thomas</creator><creator>Gendreau, K.</creator><creator>Arzoumanian, Z.</creator><creator>Navarete, Felipe</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7515-2779</orcidid><orcidid>https://orcid.org/0000-0003-2971-0439</orcidid><orcidid>https://orcid.org/0000-0002-2806-9339</orcidid><orcidid>https://orcid.org/0000-0002-0284-0578</orcidid><orcidid>https://orcid.org/0000-0002-7762-3172</orcidid><orcidid>https://orcid.org/0000-0001-9754-2233</orcidid><orcidid>https://orcid.org/0000-0001-7673-4340</orcidid><orcidid>https://orcid.org/0000-0002-6851-5380</orcidid><orcidid>https://orcid.org/0000-0002-7978-2994</orcidid><orcidid>https://orcid.org/0000-0001-7115-2819</orcidid></search><sort><creationdate>20220701</creationdate><title>NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage</title><author>Espinoza-Galeas, David ; Corcoran, M. F. ; Hamaguchi, K. ; Russell, C. M. P. ; Gull, T. R. ; Moffat, A. F. J. ; Richardson, N. D. ; Weigelt, G. ; Hillier, D. John ; Damineli, Augusto ; Stevens, Ian R. ; Madura, Thomas ; Gendreau, K. ; Arzoumanian, Z. ; Navarete, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-495b164023b810c62fe9cb54f7285331a8783f2ff02a7582673bbe2b230fd7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Astrophysics</topic><topic>Clumps</topic><topic>Companion stars</topic><topic>Density</topic><topic>Ejecta</topic><topic>Emission</topic><topic>Fluctuations</topic><topic>Luminosity</topic><topic>Recovery</topic><topic>Stellar evolution</topic><topic>Stellar winds</topic><topic>Wind</topic><topic>X-ray astronomy</topic><topic>X-ray emissions</topic><topic>X-ray fluxes</topic><topic>X-ray sources</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinoza-Galeas, David</creatorcontrib><creatorcontrib>Corcoran, M. F.</creatorcontrib><creatorcontrib>Hamaguchi, K.</creatorcontrib><creatorcontrib>Russell, C. M. P.</creatorcontrib><creatorcontrib>Gull, T. R.</creatorcontrib><creatorcontrib>Moffat, A. F. J.</creatorcontrib><creatorcontrib>Richardson, N. D.</creatorcontrib><creatorcontrib>Weigelt, G.</creatorcontrib><creatorcontrib>Hillier, D. John</creatorcontrib><creatorcontrib>Damineli, Augusto</creatorcontrib><creatorcontrib>Stevens, Ian R.</creatorcontrib><creatorcontrib>Madura, Thomas</creatorcontrib><creatorcontrib>Gendreau, K.</creatorcontrib><creatorcontrib>Arzoumanian, Z.</creatorcontrib><creatorcontrib>Navarete, Felipe</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinoza-Galeas, David</au><au>Corcoran, M. F.</au><au>Hamaguchi, K.</au><au>Russell, C. M. P.</au><au>Gull, T. R.</au><au>Moffat, A. F. J.</au><au>Richardson, N. D.</au><au>Weigelt, G.</au><au>Hillier, D. John</au><au>Damineli, Augusto</au><au>Stevens, Ian R.</au><au>Madura, Thomas</au><au>Gendreau, K.</au><au>Arzoumanian, Z.</au><au>Navarete, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>933</volume><issue>2</issue><spage>136</spage><pages>136-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We report high-precision X-ray monitoring observations in the 0.4–10 keV band of the luminous, long-period colliding wind binary Eta Carinae, up to and through its most recent X-ray minimum/periastron passage in 2020 February. Eta Carinae reached its observed maximum X-ray flux on 2020 January 7, at a flux level of 3.30 ×10 −10 ergs s −1 cm −2 , followed by a rapid plunge to its observed minimum flux, 0.03 × 10 −10 ergs s −1 cm −2 , near 2020 February 17. The NICER observations show an X-ray recovery from the minimum of only ∼16 days, the shortest X-ray minimum observed so far. We provide new constraints for the “deep” and “shallow” minimum intervals. Variations in the characteristic X-ray temperatures of the hottest observed X-ray emission indicate that the apex of the wind–wind “bow shock” enters the companion’s wind acceleration zone about 81 days before the start of the X-ray minimum. There is a steplike increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During the recovery and after, the column density shows a smooth decline, which agrees with previous N H measurements made by Swift at the same orbital phase, indicating that the changes in the mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of ∼10 41 ergs s −1 near the time of the “Great Eruption.”</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac69ce</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7515-2779</orcidid><orcidid>https://orcid.org/0000-0003-2971-0439</orcidid><orcidid>https://orcid.org/0000-0002-2806-9339</orcidid><orcidid>https://orcid.org/0000-0002-0284-0578</orcidid><orcidid>https://orcid.org/0000-0002-7762-3172</orcidid><orcidid>https://orcid.org/0000-0001-9754-2233</orcidid><orcidid>https://orcid.org/0000-0001-7673-4340</orcidid><orcidid>https://orcid.org/0000-0002-6851-5380</orcidid><orcidid>https://orcid.org/0000-0002-7978-2994</orcidid><orcidid>https://orcid.org/0000-0001-7115-2819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-07, Vol.933 (2), p.136
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac69ce
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Apexes
Astrophysics
Clumps
Companion stars
Density
Ejecta
Emission
Fluctuations
Luminosity
Recovery
Stellar evolution
Stellar winds
Wind
X-ray astronomy
X-ray emissions
X-ray fluxes
X-ray sources
X-rays
title NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NICER%20X-Ray%20Observations%20of%20Eta%20Carinae%20during%20Its%20Most%20Recent%20Periastron%20Passage&rft.jtitle=The%20Astrophysical%20journal&rft.au=Espinoza-Galeas,%20David&rft.date=2022-07-01&rft.volume=933&rft.issue=2&rft.spage=136&rft.pages=136-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac69ce&rft_dat=%3Cproquest_cross%3E2686926177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686926177&rft_id=info:pmid/&rfr_iscdi=true