An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers
The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg 2 seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infrared Y , J , and short...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-02, Vol.926 (2), p.152 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 152 |
container_title | The Astrophysical journal |
container_volume | 926 |
creator | Frostig, Danielle Biscoveanu, Sylvia Mo, Geoffrey Karambelkar, Viraj Dal Canton, Tito Chen, Hsin-Yu Kasliwal, Mansi Katsavounidis, Erik Lourie, Nathan P. Simcoe, Robert A. Vitale, Salvatore |
description | The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg
2
seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infrared
Y
,
J
, and short-
H
bands (0.9–1.7
μ
m, to
J
AB
= 21 mag) on a dedicated 1 m telescope at Palomar Observatory. To date, most prompt kilonova follow-up has been in optical wavelengths; however, near-infrared emission fades more slowly and depends less on geometry and viewing angle than optical emission. We present an end-to-end simulation of a follow-up campaign during the fourth observing run (O4) of the LIGO, Virgo, and KAGRA interferometers, including simulating 625 BNS mergers, their detection in gravitational waves, low-latency and full parameter estimation skymaps, and a suite of kilonova lightcurves from two different model grids. We predict up to five new kilonovae independently discovered by WINTER during O4, given a realistic BNS merger rate. Using a larger grid of kilonova parameters, we find that kilonova emission is ≈2 times longer lived and red kilonovae are detected ≈1.5 times further in the infrared than in the optical. For 90% localization areas smaller than 150 (450) deg
2
, WINTER will be sensitive to more than 10% of the kilonova model grid out to 350 (200) Mpc. We develop a generalized toolkit to create an optimal BNS follow-up strategy with any electromagnetic telescope and present WINTER’s observing strategy with this framework. This toolkit, all simulated gravitational-wave events, and skymaps are made available for use by the community. |
doi_str_mv | 10.3847/1538-4357/ac4508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac4508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635546637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-1310207b810ba5005bf8870460c35ded739c637b44d32a3d66ba8b7a1dda106b3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwFPgt2SJmmy4xzTFecEN1G8hLRNbUdtatJN_O9NqejJ0-M9ft_3Pj4AzjEaEUH5GDMiAkoYH6uUMiQOwOD3dAgGCCEaRIS_HIMT57bdGk4mA_A6rWFc51ZZncG1VjYtYG4svCsrU5u90vCzbAvYFho-x6vN_BFudKVdaho9gvEIXpe1sl9wpXetNTVct8rCe23ftHWn4ChXldNnP3MInm7mm9kiWD7cxrPpMkh98DbABKMQ8URglCiGEEtyITiiEUoJy3TGyST1wRNKMxIqkkVRokTCFc4yhVGUkCG47H0LVcnGlu8-kDSqlIvpUnY3RGjEhSB77NmLnm2s-dhp18qt2dnax5NhRBijkX_lKdRTqTXOWZ3_2mIku7ZlV63sqpV9215y1UtK0_x5_ot_AyIUfNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635546637</pqid></control><display><type>article</type><title>An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Frostig, Danielle ; Biscoveanu, Sylvia ; Mo, Geoffrey ; Karambelkar, Viraj ; Dal Canton, Tito ; Chen, Hsin-Yu ; Kasliwal, Mansi ; Katsavounidis, Erik ; Lourie, Nathan P. ; Simcoe, Robert A. ; Vitale, Salvatore</creator><creatorcontrib>Frostig, Danielle ; Biscoveanu, Sylvia ; Mo, Geoffrey ; Karambelkar, Viraj ; Dal Canton, Tito ; Chen, Hsin-Yu ; Kasliwal, Mansi ; Katsavounidis, Erik ; Lourie, Nathan P. ; Simcoe, Robert A. ; Vitale, Salvatore</creatorcontrib><description>The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg
2
seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infrared
Y
,
J
, and short-
H
bands (0.9–1.7
μ
m, to
J
AB
= 21 mag) on a dedicated 1 m telescope at Palomar Observatory. To date, most prompt kilonova follow-up has been in optical wavelengths; however, near-infrared emission fades more slowly and depends less on geometry and viewing angle than optical emission. We present an end-to-end simulation of a follow-up campaign during the fourth observing run (O4) of the LIGO, Virgo, and KAGRA interferometers, including simulating 625 BNS mergers, their detection in gravitational waves, low-latency and full parameter estimation skymaps, and a suite of kilonova lightcurves from two different model grids. We predict up to five new kilonovae independently discovered by WINTER during O4, given a realistic BNS merger rate. Using a larger grid of kilonova parameters, we find that kilonova emission is ≈2 times longer lived and red kilonovae are detected ≈1.5 times further in the infrared than in the optical. For 90% localization areas smaller than 150 (450) deg
2
, WINTER will be sensitive to more than 10% of the kilonova model grid out to 350 (200) Mpc. We develop a generalized toolkit to create an optimal BNS follow-up strategy with any electromagnetic telescope and present WINTER’s observing strategy with this framework. This toolkit, all simulated gravitational-wave events, and skymaps are made available for use by the community.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac4508</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Binary stars ; Black holes ; General Relativity and Quantum Cosmology ; Gravitational wave astronomy ; Gravitational waves ; High Energy Astrophysical Phenomena ; Infrared emissions ; Infrared telescopes ; Instrumentation and Methods for Astrophysic ; Interferometers ; Kilonovae ; Mathematical models ; Near infrared radiation ; Neutron stars ; Neutrons ; Parameter estimation ; Physics ; Simulation ; Star mergers ; Stars & galaxies ; Telescopes ; Toolkits ; Wavelengths</subject><ispartof>The Astrophysical journal, 2022-02, Vol.926 (2), p.152</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-1310207b810ba5005bf8870460c35ded739c637b44d32a3d66ba8b7a1dda106b3</citedby><cites>FETCH-LOGICAL-c384t-1310207b810ba5005bf8870460c35ded739c637b44d32a3d66ba8b7a1dda106b3</cites><orcidid>0000-0001-7616-7366 ; 0000-0002-5619-4938 ; 0000-0001-5078-9044 ; 0000-0003-2758-159X ; 0000-0003-2700-0767 ; 0000-0002-7197-9004 ; 0000-0001-6331-112X ; 0000-0001-5403-3762 ; 0000-0003-3769-9559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac4508/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,27901,27902,38867,53842</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03467883$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Frostig, Danielle</creatorcontrib><creatorcontrib>Biscoveanu, Sylvia</creatorcontrib><creatorcontrib>Mo, Geoffrey</creatorcontrib><creatorcontrib>Karambelkar, Viraj</creatorcontrib><creatorcontrib>Dal Canton, Tito</creatorcontrib><creatorcontrib>Chen, Hsin-Yu</creatorcontrib><creatorcontrib>Kasliwal, Mansi</creatorcontrib><creatorcontrib>Katsavounidis, Erik</creatorcontrib><creatorcontrib>Lourie, Nathan P.</creatorcontrib><creatorcontrib>Simcoe, Robert A.</creatorcontrib><creatorcontrib>Vitale, Salvatore</creatorcontrib><title>An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg
2
seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infrared
Y
,
J
, and short-
H
bands (0.9–1.7
μ
m, to
J
AB
= 21 mag) on a dedicated 1 m telescope at Palomar Observatory. To date, most prompt kilonova follow-up has been in optical wavelengths; however, near-infrared emission fades more slowly and depends less on geometry and viewing angle than optical emission. We present an end-to-end simulation of a follow-up campaign during the fourth observing run (O4) of the LIGO, Virgo, and KAGRA interferometers, including simulating 625 BNS mergers, their detection in gravitational waves, low-latency and full parameter estimation skymaps, and a suite of kilonova lightcurves from two different model grids. We predict up to five new kilonovae independently discovered by WINTER during O4, given a realistic BNS merger rate. Using a larger grid of kilonova parameters, we find that kilonova emission is ≈2 times longer lived and red kilonovae are detected ≈1.5 times further in the infrared than in the optical. For 90% localization areas smaller than 150 (450) deg
2
, WINTER will be sensitive to more than 10% of the kilonova model grid out to 350 (200) Mpc. We develop a generalized toolkit to create an optimal BNS follow-up strategy with any electromagnetic telescope and present WINTER’s observing strategy with this framework. This toolkit, all simulated gravitational-wave events, and skymaps are made available for use by the community.</description><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Gravitational wave astronomy</subject><subject>Gravitational waves</subject><subject>High Energy Astrophysical Phenomena</subject><subject>Infrared emissions</subject><subject>Infrared telescopes</subject><subject>Instrumentation and Methods for Astrophysic</subject><subject>Interferometers</subject><subject>Kilonovae</subject><subject>Mathematical models</subject><subject>Near infrared radiation</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Simulation</subject><subject>Star mergers</subject><subject>Stars & galaxies</subject><subject>Telescopes</subject><subject>Toolkits</subject><subject>Wavelengths</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kMFLwzAUxoMoOKd3jwFPgt2SJmmy4xzTFecEN1G8hLRNbUdtatJN_O9NqejJ0-M9ft_3Pj4AzjEaEUH5GDMiAkoYH6uUMiQOwOD3dAgGCCEaRIS_HIMT57bdGk4mA_A6rWFc51ZZncG1VjYtYG4svCsrU5u90vCzbAvYFho-x6vN_BFudKVdaho9gvEIXpe1sl9wpXetNTVct8rCe23ftHWn4ChXldNnP3MInm7mm9kiWD7cxrPpMkh98DbABKMQ8URglCiGEEtyITiiEUoJy3TGyST1wRNKMxIqkkVRokTCFc4yhVGUkCG47H0LVcnGlu8-kDSqlIvpUnY3RGjEhSB77NmLnm2s-dhp18qt2dnax5NhRBijkX_lKdRTqTXOWZ3_2mIku7ZlV63sqpV9215y1UtK0_x5_ot_AyIUfNw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Frostig, Danielle</creator><creator>Biscoveanu, Sylvia</creator><creator>Mo, Geoffrey</creator><creator>Karambelkar, Viraj</creator><creator>Dal Canton, Tito</creator><creator>Chen, Hsin-Yu</creator><creator>Kasliwal, Mansi</creator><creator>Katsavounidis, Erik</creator><creator>Lourie, Nathan P.</creator><creator>Simcoe, Robert A.</creator><creator>Vitale, Salvatore</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7616-7366</orcidid><orcidid>https://orcid.org/0000-0002-5619-4938</orcidid><orcidid>https://orcid.org/0000-0001-5078-9044</orcidid><orcidid>https://orcid.org/0000-0003-2758-159X</orcidid><orcidid>https://orcid.org/0000-0003-2700-0767</orcidid><orcidid>https://orcid.org/0000-0002-7197-9004</orcidid><orcidid>https://orcid.org/0000-0001-6331-112X</orcidid><orcidid>https://orcid.org/0000-0001-5403-3762</orcidid><orcidid>https://orcid.org/0000-0003-3769-9559</orcidid></search><sort><creationdate>20220201</creationdate><title>An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers</title><author>Frostig, Danielle ; Biscoveanu, Sylvia ; Mo, Geoffrey ; Karambelkar, Viraj ; Dal Canton, Tito ; Chen, Hsin-Yu ; Kasliwal, Mansi ; Katsavounidis, Erik ; Lourie, Nathan P. ; Simcoe, Robert A. ; Vitale, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-1310207b810ba5005bf8870460c35ded739c637b44d32a3d66ba8b7a1dda106b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Gravitational wave astronomy</topic><topic>Gravitational waves</topic><topic>High Energy Astrophysical Phenomena</topic><topic>Infrared emissions</topic><topic>Infrared telescopes</topic><topic>Instrumentation and Methods for Astrophysic</topic><topic>Interferometers</topic><topic>Kilonovae</topic><topic>Mathematical models</topic><topic>Near infrared radiation</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Simulation</topic><topic>Star mergers</topic><topic>Stars & galaxies</topic><topic>Telescopes</topic><topic>Toolkits</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frostig, Danielle</creatorcontrib><creatorcontrib>Biscoveanu, Sylvia</creatorcontrib><creatorcontrib>Mo, Geoffrey</creatorcontrib><creatorcontrib>Karambelkar, Viraj</creatorcontrib><creatorcontrib>Dal Canton, Tito</creatorcontrib><creatorcontrib>Chen, Hsin-Yu</creatorcontrib><creatorcontrib>Kasliwal, Mansi</creatorcontrib><creatorcontrib>Katsavounidis, Erik</creatorcontrib><creatorcontrib>Lourie, Nathan P.</creatorcontrib><creatorcontrib>Simcoe, Robert A.</creatorcontrib><creatorcontrib>Vitale, Salvatore</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frostig, Danielle</au><au>Biscoveanu, Sylvia</au><au>Mo, Geoffrey</au><au>Karambelkar, Viraj</au><au>Dal Canton, Tito</au><au>Chen, Hsin-Yu</au><au>Kasliwal, Mansi</au><au>Katsavounidis, Erik</au><au>Lourie, Nathan P.</au><au>Simcoe, Robert A.</au><au>Vitale, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>926</volume><issue>2</issue><spage>152</spage><pages>152-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg
2
seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infrared
Y
,
J
, and short-
H
bands (0.9–1.7
μ
m, to
J
AB
= 21 mag) on a dedicated 1 m telescope at Palomar Observatory. To date, most prompt kilonova follow-up has been in optical wavelengths; however, near-infrared emission fades more slowly and depends less on geometry and viewing angle than optical emission. We present an end-to-end simulation of a follow-up campaign during the fourth observing run (O4) of the LIGO, Virgo, and KAGRA interferometers, including simulating 625 BNS mergers, their detection in gravitational waves, low-latency and full parameter estimation skymaps, and a suite of kilonova lightcurves from two different model grids. We predict up to five new kilonovae independently discovered by WINTER during O4, given a realistic BNS merger rate. Using a larger grid of kilonova parameters, we find that kilonova emission is ≈2 times longer lived and red kilonovae are detected ≈1.5 times further in the infrared than in the optical. For 90% localization areas smaller than 150 (450) deg
2
, WINTER will be sensitive to more than 10% of the kilonova model grid out to 350 (200) Mpc. We develop a generalized toolkit to create an optimal BNS follow-up strategy with any electromagnetic telescope and present WINTER’s observing strategy with this framework. This toolkit, all simulated gravitational-wave events, and skymaps are made available for use by the community.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac4508</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7616-7366</orcidid><orcidid>https://orcid.org/0000-0002-5619-4938</orcidid><orcidid>https://orcid.org/0000-0001-5078-9044</orcidid><orcidid>https://orcid.org/0000-0003-2758-159X</orcidid><orcidid>https://orcid.org/0000-0003-2700-0767</orcidid><orcidid>https://orcid.org/0000-0002-7197-9004</orcidid><orcidid>https://orcid.org/0000-0001-6331-112X</orcidid><orcidid>https://orcid.org/0000-0001-5403-3762</orcidid><orcidid>https://orcid.org/0000-0003-3769-9559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-02, Vol.926 (2), p.152 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ac4508 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Astrophysics Binary stars Black holes General Relativity and Quantum Cosmology Gravitational wave astronomy Gravitational waves High Energy Astrophysical Phenomena Infrared emissions Infrared telescopes Instrumentation and Methods for Astrophysic Interferometers Kilonovae Mathematical models Near infrared radiation Neutron stars Neutrons Parameter estimation Physics Simulation Star mergers Stars & galaxies Telescopes Toolkits Wavelengths |
title | An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Infrared%20Search%20for%20Kilonovae%20with%20the%20WINTER%20Telescope.%20I.%20Binary%20Neutron%20Star%20Mergers&rft.jtitle=The%20Astrophysical%20journal&rft.au=Frostig,%20Danielle&rft.date=2022-02-01&rft.volume=926&rft.issue=2&rft.spage=152&rft.pages=152-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac4508&rft_dat=%3Cproquest_cross%3E2635546637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635546637&rft_id=info:pmid/&rfr_iscdi=true |