Local Environments of Low-redshift Supernovae

We characterize the local (2 kpc sized) environments of Type Ia, II, and Ib/c supernovae (SNe) that have recently occurred in nearby ( d ≲ 50 Mpc) galaxies. Using ultraviolet (UV; from Galaxy Evolution Explorer) and infrared (IR; from Wide-field Infrared Survey Explorer) maps of 359 galaxies and a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-12, Vol.923 (1), p.86
Hauptverfasser: Cronin, Serena A., Utomo, Dyas, Leroy, Adam K., Behrens, Erica A., Chastenet, Jérémy, Holland-Ashford, Tyler, Koch, Eric W., Lopez, Laura A., Sandstrom, Karin M., Williams, Thomas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 86
container_title The Astrophysical journal
container_volume 923
creator Cronin, Serena A.
Utomo, Dyas
Leroy, Adam K.
Behrens, Erica A.
Chastenet, Jérémy
Holland-Ashford, Tyler
Koch, Eric W.
Lopez, Laura A.
Sandstrom, Karin M.
Williams, Thomas G.
description We characterize the local (2 kpc sized) environments of Type Ia, II, and Ib/c supernovae (SNe) that have recently occurred in nearby ( d ≲ 50 Mpc) galaxies. Using ultraviolet (UV; from Galaxy Evolution Explorer) and infrared (IR; from Wide-field Infrared Survey Explorer) maps of 359 galaxies and a sample of 472 SNe, we measure the star formation rate surface density (Σ SFR ) and stellar mass surface density (Σ ⋆ ) in a 2 kpc beam centered on each SN site. We show that core-collapse SNe are preferentially located along the resolved galactic star-forming main sequence, whereas Type Ia SNe are extended to lower values of Σ SFR at fixed Σ ⋆ , indicative of locations inside quiescent galaxies or quiescent regions of galaxies. We also test how well the radial distribution of each SN type matches the radial distributions of UV and IR light in each host galaxy. We find that, to first order, the distributions of all types of SNe mirror those of both near-IR light (3.4 and 4.5 μ m, tracing the stellar mass distribution) and mid-IR light (12 and 22 μ m, tracing emission from hot, small grains), and also resemble our best-estimate Σ SFR . All types of SNe appear more radially concentrated than the UV emission of their host galaxies. In more detail, the distributions of Type II SNe show small statistical differences from those of near-IR light. We attribute this overall structural uniformity to the fact that within any individual galaxy, Σ SFR and Σ ⋆ track one another well, with variations in Σ SFR /Σ ⋆ most visible when comparing between galaxies.
doi_str_mv 10.3847/1538-4357/ac28a2
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac28a2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609731136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-bfcd88f3644be79f57e675644c6658be1c4a696310f33af68d666958a64125643</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePRa8Gjdpkkl6lGX9gIIHFbyFNE2wy25Tk3bFf29LRU-ehnd43hl4ELqk5IYpLldUMIU5E3JlbK5MfoQWv6tjtCCEcAxMvp2is5S2U8yLYoFwGazZZZv20MTQ7l3bpyz4rAyfOLo6vTe-z56HzsU2HIw7Ryfe7JK7-JlL9Hq3eVk_4PLp_nF9W2LLBOlx5W2tlGfAeeVk4YV0IMWYLIBQlaOWGyiAUeIZMx5UDQCFUAY4zUeOLdHVfLeL4WNwqdfbMMR2fKlzIIVklDIYKTJTNoaUovO6i83exC9NiZ6k6MmAngzoWcpYuZ4rTej-bv6LfwPIUWDS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609731136</pqid></control><display><type>article</type><title>Local Environments of Low-redshift Supernovae</title><source>IOP Publishing Free Content</source><creator>Cronin, Serena A. ; Utomo, Dyas ; Leroy, Adam K. ; Behrens, Erica A. ; Chastenet, Jérémy ; Holland-Ashford, Tyler ; Koch, Eric W. ; Lopez, Laura A. ; Sandstrom, Karin M. ; Williams, Thomas G.</creator><creatorcontrib>Cronin, Serena A. ; Utomo, Dyas ; Leroy, Adam K. ; Behrens, Erica A. ; Chastenet, Jérémy ; Holland-Ashford, Tyler ; Koch, Eric W. ; Lopez, Laura A. ; Sandstrom, Karin M. ; Williams, Thomas G.</creatorcontrib><description>We characterize the local (2 kpc sized) environments of Type Ia, II, and Ib/c supernovae (SNe) that have recently occurred in nearby ( d ≲ 50 Mpc) galaxies. Using ultraviolet (UV; from Galaxy Evolution Explorer) and infrared (IR; from Wide-field Infrared Survey Explorer) maps of 359 galaxies and a sample of 472 SNe, we measure the star formation rate surface density (Σ SFR ) and stellar mass surface density (Σ ⋆ ) in a 2 kpc beam centered on each SN site. We show that core-collapse SNe are preferentially located along the resolved galactic star-forming main sequence, whereas Type Ia SNe are extended to lower values of Σ SFR at fixed Σ ⋆ , indicative of locations inside quiescent galaxies or quiescent regions of galaxies. We also test how well the radial distribution of each SN type matches the radial distributions of UV and IR light in each host galaxy. We find that, to first order, the distributions of all types of SNe mirror those of both near-IR light (3.4 and 4.5 μ m, tracing the stellar mass distribution) and mid-IR light (12 and 22 μ m, tracing emission from hot, small grains), and also resemble our best-estimate Σ SFR . All types of SNe appear more radially concentrated than the UV emission of their host galaxies. In more detail, the distributions of Type II SNe show small statistical differences from those of near-IR light. We attribute this overall structural uniformity to the fact that within any individual galaxy, Σ SFR and Σ ⋆ track one another well, with variations in Σ SFR /Σ ⋆ most visible when comparing between galaxies.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac28a2</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Density ; Emission ; Galactic evolution ; Galaxies ; Galaxy distribution ; Infrared astronomy ; Mass distribution ; Near infrared radiation ; Radial distribution ; Red shift ; Star &amp; galaxy formation ; Star formation ; Star formation rate ; Stars &amp; galaxies ; Stellar mass ; Supernovae ; Tracing</subject><ispartof>The Astrophysical journal, 2021-12, Vol.923 (1), p.86</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-bfcd88f3644be79f57e675644c6658be1c4a696310f33af68d666958a64125643</citedby><cites>FETCH-LOGICAL-c350t-bfcd88f3644be79f57e675644c6658be1c4a696310f33af68d666958a64125643</cites><orcidid>0000-0002-7643-0504 ; 0000-0002-0012-2142 ; 0000-0002-5235-5589 ; 0000-0002-4378-8534 ; 0000-0002-1790-3148 ; 0000-0002-2545-1700 ; 0000-0002-9511-1330 ; 0000-0002-2333-5474 ; 0000-0003-4161-2639 ; 0000-0001-9605-780X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac28a2/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac28a2$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Cronin, Serena A.</creatorcontrib><creatorcontrib>Utomo, Dyas</creatorcontrib><creatorcontrib>Leroy, Adam K.</creatorcontrib><creatorcontrib>Behrens, Erica A.</creatorcontrib><creatorcontrib>Chastenet, Jérémy</creatorcontrib><creatorcontrib>Holland-Ashford, Tyler</creatorcontrib><creatorcontrib>Koch, Eric W.</creatorcontrib><creatorcontrib>Lopez, Laura A.</creatorcontrib><creatorcontrib>Sandstrom, Karin M.</creatorcontrib><creatorcontrib>Williams, Thomas G.</creatorcontrib><title>Local Environments of Low-redshift Supernovae</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We characterize the local (2 kpc sized) environments of Type Ia, II, and Ib/c supernovae (SNe) that have recently occurred in nearby ( d ≲ 50 Mpc) galaxies. Using ultraviolet (UV; from Galaxy Evolution Explorer) and infrared (IR; from Wide-field Infrared Survey Explorer) maps of 359 galaxies and a sample of 472 SNe, we measure the star formation rate surface density (Σ SFR ) and stellar mass surface density (Σ ⋆ ) in a 2 kpc beam centered on each SN site. We show that core-collapse SNe are preferentially located along the resolved galactic star-forming main sequence, whereas Type Ia SNe are extended to lower values of Σ SFR at fixed Σ ⋆ , indicative of locations inside quiescent galaxies or quiescent regions of galaxies. We also test how well the radial distribution of each SN type matches the radial distributions of UV and IR light in each host galaxy. We find that, to first order, the distributions of all types of SNe mirror those of both near-IR light (3.4 and 4.5 μ m, tracing the stellar mass distribution) and mid-IR light (12 and 22 μ m, tracing emission from hot, small grains), and also resemble our best-estimate Σ SFR . All types of SNe appear more radially concentrated than the UV emission of their host galaxies. In more detail, the distributions of Type II SNe show small statistical differences from those of near-IR light. We attribute this overall structural uniformity to the fact that within any individual galaxy, Σ SFR and Σ ⋆ track one another well, with variations in Σ SFR /Σ ⋆ most visible when comparing between galaxies.</description><subject>Astrophysics</subject><subject>Density</subject><subject>Emission</subject><subject>Galactic evolution</subject><subject>Galaxies</subject><subject>Galaxy distribution</subject><subject>Infrared astronomy</subject><subject>Mass distribution</subject><subject>Near infrared radiation</subject><subject>Radial distribution</subject><subject>Red shift</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Star formation rate</subject><subject>Stars &amp; galaxies</subject><subject>Stellar mass</subject><subject>Supernovae</subject><subject>Tracing</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePRa8Gjdpkkl6lGX9gIIHFbyFNE2wy25Tk3bFf29LRU-ehnd43hl4ELqk5IYpLldUMIU5E3JlbK5MfoQWv6tjtCCEcAxMvp2is5S2U8yLYoFwGazZZZv20MTQ7l3bpyz4rAyfOLo6vTe-z56HzsU2HIw7Ryfe7JK7-JlL9Hq3eVk_4PLp_nF9W2LLBOlx5W2tlGfAeeVk4YV0IMWYLIBQlaOWGyiAUeIZMx5UDQCFUAY4zUeOLdHVfLeL4WNwqdfbMMR2fKlzIIVklDIYKTJTNoaUovO6i83exC9NiZ6k6MmAngzoWcpYuZ4rTej-bv6LfwPIUWDS</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cronin, Serena A.</creator><creator>Utomo, Dyas</creator><creator>Leroy, Adam K.</creator><creator>Behrens, Erica A.</creator><creator>Chastenet, Jérémy</creator><creator>Holland-Ashford, Tyler</creator><creator>Koch, Eric W.</creator><creator>Lopez, Laura A.</creator><creator>Sandstrom, Karin M.</creator><creator>Williams, Thomas G.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7643-0504</orcidid><orcidid>https://orcid.org/0000-0002-0012-2142</orcidid><orcidid>https://orcid.org/0000-0002-5235-5589</orcidid><orcidid>https://orcid.org/0000-0002-4378-8534</orcidid><orcidid>https://orcid.org/0000-0002-1790-3148</orcidid><orcidid>https://orcid.org/0000-0002-2545-1700</orcidid><orcidid>https://orcid.org/0000-0002-9511-1330</orcidid><orcidid>https://orcid.org/0000-0002-2333-5474</orcidid><orcidid>https://orcid.org/0000-0003-4161-2639</orcidid><orcidid>https://orcid.org/0000-0001-9605-780X</orcidid></search><sort><creationdate>20211201</creationdate><title>Local Environments of Low-redshift Supernovae</title><author>Cronin, Serena A. ; Utomo, Dyas ; Leroy, Adam K. ; Behrens, Erica A. ; Chastenet, Jérémy ; Holland-Ashford, Tyler ; Koch, Eric W. ; Lopez, Laura A. ; Sandstrom, Karin M. ; Williams, Thomas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-bfcd88f3644be79f57e675644c6658be1c4a696310f33af68d666958a64125643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Density</topic><topic>Emission</topic><topic>Galactic evolution</topic><topic>Galaxies</topic><topic>Galaxy distribution</topic><topic>Infrared astronomy</topic><topic>Mass distribution</topic><topic>Near infrared radiation</topic><topic>Radial distribution</topic><topic>Red shift</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Star formation rate</topic><topic>Stars &amp; galaxies</topic><topic>Stellar mass</topic><topic>Supernovae</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cronin, Serena A.</creatorcontrib><creatorcontrib>Utomo, Dyas</creatorcontrib><creatorcontrib>Leroy, Adam K.</creatorcontrib><creatorcontrib>Behrens, Erica A.</creatorcontrib><creatorcontrib>Chastenet, Jérémy</creatorcontrib><creatorcontrib>Holland-Ashford, Tyler</creatorcontrib><creatorcontrib>Koch, Eric W.</creatorcontrib><creatorcontrib>Lopez, Laura A.</creatorcontrib><creatorcontrib>Sandstrom, Karin M.</creatorcontrib><creatorcontrib>Williams, Thomas G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cronin, Serena A.</au><au>Utomo, Dyas</au><au>Leroy, Adam K.</au><au>Behrens, Erica A.</au><au>Chastenet, Jérémy</au><au>Holland-Ashford, Tyler</au><au>Koch, Eric W.</au><au>Lopez, Laura A.</au><au>Sandstrom, Karin M.</au><au>Williams, Thomas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Environments of Low-redshift Supernovae</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>923</volume><issue>1</issue><spage>86</spage><pages>86-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We characterize the local (2 kpc sized) environments of Type Ia, II, and Ib/c supernovae (SNe) that have recently occurred in nearby ( d ≲ 50 Mpc) galaxies. Using ultraviolet (UV; from Galaxy Evolution Explorer) and infrared (IR; from Wide-field Infrared Survey Explorer) maps of 359 galaxies and a sample of 472 SNe, we measure the star formation rate surface density (Σ SFR ) and stellar mass surface density (Σ ⋆ ) in a 2 kpc beam centered on each SN site. We show that core-collapse SNe are preferentially located along the resolved galactic star-forming main sequence, whereas Type Ia SNe are extended to lower values of Σ SFR at fixed Σ ⋆ , indicative of locations inside quiescent galaxies or quiescent regions of galaxies. We also test how well the radial distribution of each SN type matches the radial distributions of UV and IR light in each host galaxy. We find that, to first order, the distributions of all types of SNe mirror those of both near-IR light (3.4 and 4.5 μ m, tracing the stellar mass distribution) and mid-IR light (12 and 22 μ m, tracing emission from hot, small grains), and also resemble our best-estimate Σ SFR . All types of SNe appear more radially concentrated than the UV emission of their host galaxies. In more detail, the distributions of Type II SNe show small statistical differences from those of near-IR light. We attribute this overall structural uniformity to the fact that within any individual galaxy, Σ SFR and Σ ⋆ track one another well, with variations in Σ SFR /Σ ⋆ most visible when comparing between galaxies.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac28a2</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7643-0504</orcidid><orcidid>https://orcid.org/0000-0002-0012-2142</orcidid><orcidid>https://orcid.org/0000-0002-5235-5589</orcidid><orcidid>https://orcid.org/0000-0002-4378-8534</orcidid><orcidid>https://orcid.org/0000-0002-1790-3148</orcidid><orcidid>https://orcid.org/0000-0002-2545-1700</orcidid><orcidid>https://orcid.org/0000-0002-9511-1330</orcidid><orcidid>https://orcid.org/0000-0002-2333-5474</orcidid><orcidid>https://orcid.org/0000-0003-4161-2639</orcidid><orcidid>https://orcid.org/0000-0001-9605-780X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-12, Vol.923 (1), p.86
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac28a2
source IOP Publishing Free Content
subjects Astrophysics
Density
Emission
Galactic evolution
Galaxies
Galaxy distribution
Infrared astronomy
Mass distribution
Near infrared radiation
Radial distribution
Red shift
Star & galaxy formation
Star formation
Star formation rate
Stars & galaxies
Stellar mass
Supernovae
Tracing
title Local Environments of Low-redshift Supernovae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Environments%20of%20Low-redshift%20Supernovae&rft.jtitle=The%20Astrophysical%20journal&rft.au=Cronin,%20Serena%20A.&rft.date=2021-12-01&rft.volume=923&rft.issue=1&rft.spage=86&rft.pages=86-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac28a2&rft_dat=%3Cproquest_O3W%3E2609731136%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609731136&rft_id=info:pmid/&rfr_iscdi=true