Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb

We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-11, Vol.922 (1), p.21
Hauptverfasser: Sand, D. J., Sarbadhicary, S. K., Pellegrino, C., Misra, K., Dastidar, R., Brown, P. J., Itagaki, K., Valenti, S., Swift, Jonathan J., Andrews, J. E., Bostroem, K. A., Burke, J., Chomiuk, L., Dong, Y., Galbany, L., Graham, M. L., Hiramatsu, D., Howell, D. A., Hsiao, E. Y., Janzen, D., Jencson, J. E., Lundquist, M. J., McCully, C., Reichart, D., Smith, Nathan, Wang, Lingzhi, Wyatt, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 21
container_title The Astrophysical journal
container_volume 922
creator Sand, D. J.
Sarbadhicary, S. K.
Pellegrino, C.
Misra, K.
Dastidar, R.
Brown, P. J.
Itagaki, K.
Valenti, S.
Swift, Jonathan J.
Andrews, J. E.
Bostroem, K. A.
Burke, J.
Chomiuk, L.
Dong, Y.
Galbany, L.
Graham, M. L.
Hiramatsu, D.
Howell, D. A.
Hsiao, E. Y.
Janzen, D.
Jencson, J. E.
Lundquist, M. J.
McCully, C.
Reichart, D.
Smith, Nathan
Wang, Lingzhi
Wyatt, S.
description We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.
doi_str_mv 10.3847/1538-4357/ac20da
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac20da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597843421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294a-3557b92c2837eaac9cbd3f3207e79b4929ed1cdf6eb35f4f12d44d1c9cd0b9693</originalsourceid><addsrcrecordid>eNp1kM9LwzAcxYMoOKd3jwE9WpdfXRpvMqYO5jxsgreQJil2dElN2sn-e1sqetHTl_f4vPeFB8AlRrc0Y3yCU5oljKZ8ojRBRh2B0Y91DEYIIZZMKX87BWcxbntJhBgBPyuDbnexsVWlAny2pmx3cOZdbIIqXROhd7B5t3Du9mXwbmddA30BN58erqwK-QFuDrWFCwXXbW2D83tl7-B6BQnCXOd7qJwZJEGuys_BSaGqaC--7xi8Psw3s6dk-fK4mN0vE00EUwlNU54LoklGuVVKC50bWlCCuOUiZ4IIa7A2xdTmNC1YgYlhrHOENigXU0HH4GrorYP_aG1s5Na3wXUvJUkFzxhlBHcUGigdfIzBFrIO5U6Fg8RI9rPKfkPZbyiHWbvI9RApff3bqeqtFIRILAmWtSk67OYP7N_WL2K4hPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597843421</pqid></control><display><type>article</type><title>Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb</title><source>IOP Publishing Free Content</source><creator>Sand, D. J. ; Sarbadhicary, S. K. ; Pellegrino, C. ; Misra, K. ; Dastidar, R. ; Brown, P. J. ; Itagaki, K. ; Valenti, S. ; Swift, Jonathan J. ; Andrews, J. E. ; Bostroem, K. A. ; Burke, J. ; Chomiuk, L. ; Dong, Y. ; Galbany, L. ; Graham, M. L. ; Hiramatsu, D. ; Howell, D. A. ; Hsiao, E. Y. ; Janzen, D. ; Jencson, J. E. ; Lundquist, M. J. ; McCully, C. ; Reichart, D. ; Smith, Nathan ; Wang, Lingzhi ; Wyatt, S.</creator><creatorcontrib>Sand, D. J. ; Sarbadhicary, S. K. ; Pellegrino, C. ; Misra, K. ; Dastidar, R. ; Brown, P. J. ; Itagaki, K. ; Valenti, S. ; Swift, Jonathan J. ; Andrews, J. E. ; Bostroem, K. A. ; Burke, J. ; Chomiuk, L. ; Dong, Y. ; Galbany, L. ; Graham, M. L. ; Hiramatsu, D. ; Howell, D. A. ; Hsiao, E. Y. ; Janzen, D. ; Jencson, J. E. ; Lundquist, M. J. ; McCully, C. ; Reichart, D. ; Smith, Nathan ; Wang, Lingzhi ; Wyatt, S.</creatorcontrib><description><![CDATA[We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.]]></description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac20da</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Circumstellar matter ; Density ; Deposition ; Explosions ; Helium ; Hydrogen ; Lagrangian equilibrium points ; Luminosity ; Radio observation ; Spectroscopy ; Supernova ; Supernovae ; Type Ia supernovae ; Wind speed ; Wind velocities ; X-ray astronomy ; X-ray emissions ; X-rays</subject><ispartof>The Astrophysical journal, 2021-11, Vol.922 (1), p.21</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294a-3557b92c2837eaac9cbd3f3207e79b4929ed1cdf6eb35f4f12d44d1c9cd0b9693</citedby><cites>FETCH-LOGICAL-c294a-3557b92c2837eaac9cbd3f3207e79b4929ed1cdf6eb35f4f12d44d1c9cd0b9693</cites><orcidid>0000-0003-0549-3281 ; 0000-0002-1296-6887 ; 0000-0003-1039-2928 ; 0000-0003-2732-4956 ; 0000-0002-7472-1279 ; 0000-0003-4253-656X ; 0000-0001-6191-7160 ; 0000-0001-8818-0795 ; 0000-0002-4781-7291 ; 0000-0002-4924-444X ; 0000-0002-1125-9187 ; 0000-0003-0035-6659 ; 0000-0003-4102-380X ; 0000-0002-9486-818X ; 0000-0003-1637-267X ; 0000-0002-5060-3673 ; 0000-0001-5754-4007 ; 0000-0001-6272-5507 ; 0000-0001-9589-3793 ; 0000-0001-5807-7893 ; 0000-0002-1094-3817 ; 0000-0003-0123-0062 ; 0000-0002-8400-3705 ; 0000-0001-5510-2424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac20da/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac20da$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Sand, D. J.</creatorcontrib><creatorcontrib>Sarbadhicary, S. K.</creatorcontrib><creatorcontrib>Pellegrino, C.</creatorcontrib><creatorcontrib>Misra, K.</creatorcontrib><creatorcontrib>Dastidar, R.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Itagaki, K.</creatorcontrib><creatorcontrib>Valenti, S.</creatorcontrib><creatorcontrib>Swift, Jonathan J.</creatorcontrib><creatorcontrib>Andrews, J. E.</creatorcontrib><creatorcontrib>Bostroem, K. A.</creatorcontrib><creatorcontrib>Burke, J.</creatorcontrib><creatorcontrib>Chomiuk, L.</creatorcontrib><creatorcontrib>Dong, Y.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Graham, M. L.</creatorcontrib><creatorcontrib>Hiramatsu, D.</creatorcontrib><creatorcontrib>Howell, D. A.</creatorcontrib><creatorcontrib>Hsiao, E. Y.</creatorcontrib><creatorcontrib>Janzen, D.</creatorcontrib><creatorcontrib>Jencson, J. E.</creatorcontrib><creatorcontrib>Lundquist, M. J.</creatorcontrib><creatorcontrib>McCully, C.</creatorcontrib><creatorcontrib>Reichart, D.</creatorcontrib><creatorcontrib>Smith, Nathan</creatorcontrib><creatorcontrib>Wang, Lingzhi</creatorcontrib><creatorcontrib>Wyatt, S.</creatorcontrib><title>Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description><![CDATA[We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.]]></description><subject>Astrophysics</subject><subject>Circumstellar matter</subject><subject>Density</subject><subject>Deposition</subject><subject>Explosions</subject><subject>Helium</subject><subject>Hydrogen</subject><subject>Lagrangian equilibrium points</subject><subject>Luminosity</subject><subject>Radio observation</subject><subject>Spectroscopy</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Type Ia supernovae</subject><subject>Wind speed</subject><subject>Wind velocities</subject><subject>X-ray astronomy</subject><subject>X-ray emissions</subject><subject>X-rays</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAcxYMoOKd3jwE9WpdfXRpvMqYO5jxsgreQJil2dElN2sn-e1sqetHTl_f4vPeFB8AlRrc0Y3yCU5oljKZ8ojRBRh2B0Y91DEYIIZZMKX87BWcxbntJhBgBPyuDbnexsVWlAny2pmx3cOZdbIIqXROhd7B5t3Du9mXwbmddA30BN58erqwK-QFuDrWFCwXXbW2D83tl7-B6BQnCXOd7qJwZJEGuys_BSaGqaC--7xi8Psw3s6dk-fK4mN0vE00EUwlNU54LoklGuVVKC50bWlCCuOUiZ4IIa7A2xdTmNC1YgYlhrHOENigXU0HH4GrorYP_aG1s5Na3wXUvJUkFzxhlBHcUGigdfIzBFrIO5U6Fg8RI9rPKfkPZbyiHWbvI9RApff3bqeqtFIRILAmWtSk67OYP7N_WL2K4hPQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sand, D. J.</creator><creator>Sarbadhicary, S. K.</creator><creator>Pellegrino, C.</creator><creator>Misra, K.</creator><creator>Dastidar, R.</creator><creator>Brown, P. J.</creator><creator>Itagaki, K.</creator><creator>Valenti, S.</creator><creator>Swift, Jonathan J.</creator><creator>Andrews, J. E.</creator><creator>Bostroem, K. A.</creator><creator>Burke, J.</creator><creator>Chomiuk, L.</creator><creator>Dong, Y.</creator><creator>Galbany, L.</creator><creator>Graham, M. L.</creator><creator>Hiramatsu, D.</creator><creator>Howell, D. A.</creator><creator>Hsiao, E. Y.</creator><creator>Janzen, D.</creator><creator>Jencson, J. E.</creator><creator>Lundquist, M. J.</creator><creator>McCully, C.</creator><creator>Reichart, D.</creator><creator>Smith, Nathan</creator><creator>Wang, Lingzhi</creator><creator>Wyatt, S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0549-3281</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0003-1039-2928</orcidid><orcidid>https://orcid.org/0000-0003-2732-4956</orcidid><orcidid>https://orcid.org/0000-0002-7472-1279</orcidid><orcidid>https://orcid.org/0000-0003-4253-656X</orcidid><orcidid>https://orcid.org/0000-0001-6191-7160</orcidid><orcidid>https://orcid.org/0000-0001-8818-0795</orcidid><orcidid>https://orcid.org/0000-0002-4781-7291</orcidid><orcidid>https://orcid.org/0000-0002-4924-444X</orcidid><orcidid>https://orcid.org/0000-0002-1125-9187</orcidid><orcidid>https://orcid.org/0000-0003-0035-6659</orcidid><orcidid>https://orcid.org/0000-0003-4102-380X</orcidid><orcidid>https://orcid.org/0000-0002-9486-818X</orcidid><orcidid>https://orcid.org/0000-0003-1637-267X</orcidid><orcidid>https://orcid.org/0000-0002-5060-3673</orcidid><orcidid>https://orcid.org/0000-0001-5754-4007</orcidid><orcidid>https://orcid.org/0000-0001-6272-5507</orcidid><orcidid>https://orcid.org/0000-0001-9589-3793</orcidid><orcidid>https://orcid.org/0000-0001-5807-7893</orcidid><orcidid>https://orcid.org/0000-0002-1094-3817</orcidid><orcidid>https://orcid.org/0000-0003-0123-0062</orcidid><orcidid>https://orcid.org/0000-0002-8400-3705</orcidid><orcidid>https://orcid.org/0000-0001-5510-2424</orcidid></search><sort><creationdate>20211101</creationdate><title>Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb</title><author>Sand, D. J. ; Sarbadhicary, S. K. ; Pellegrino, C. ; Misra, K. ; Dastidar, R. ; Brown, P. J. ; Itagaki, K. ; Valenti, S. ; Swift, Jonathan J. ; Andrews, J. E. ; Bostroem, K. A. ; Burke, J. ; Chomiuk, L. ; Dong, Y. ; Galbany, L. ; Graham, M. L. ; Hiramatsu, D. ; Howell, D. A. ; Hsiao, E. Y. ; Janzen, D. ; Jencson, J. E. ; Lundquist, M. J. ; McCully, C. ; Reichart, D. ; Smith, Nathan ; Wang, Lingzhi ; Wyatt, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294a-3557b92c2837eaac9cbd3f3207e79b4929ed1cdf6eb35f4f12d44d1c9cd0b9693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Circumstellar matter</topic><topic>Density</topic><topic>Deposition</topic><topic>Explosions</topic><topic>Helium</topic><topic>Hydrogen</topic><topic>Lagrangian equilibrium points</topic><topic>Luminosity</topic><topic>Radio observation</topic><topic>Spectroscopy</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Type Ia supernovae</topic><topic>Wind speed</topic><topic>Wind velocities</topic><topic>X-ray astronomy</topic><topic>X-ray emissions</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sand, D. J.</creatorcontrib><creatorcontrib>Sarbadhicary, S. K.</creatorcontrib><creatorcontrib>Pellegrino, C.</creatorcontrib><creatorcontrib>Misra, K.</creatorcontrib><creatorcontrib>Dastidar, R.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Itagaki, K.</creatorcontrib><creatorcontrib>Valenti, S.</creatorcontrib><creatorcontrib>Swift, Jonathan J.</creatorcontrib><creatorcontrib>Andrews, J. E.</creatorcontrib><creatorcontrib>Bostroem, K. A.</creatorcontrib><creatorcontrib>Burke, J.</creatorcontrib><creatorcontrib>Chomiuk, L.</creatorcontrib><creatorcontrib>Dong, Y.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Graham, M. L.</creatorcontrib><creatorcontrib>Hiramatsu, D.</creatorcontrib><creatorcontrib>Howell, D. A.</creatorcontrib><creatorcontrib>Hsiao, E. Y.</creatorcontrib><creatorcontrib>Janzen, D.</creatorcontrib><creatorcontrib>Jencson, J. E.</creatorcontrib><creatorcontrib>Lundquist, M. J.</creatorcontrib><creatorcontrib>McCully, C.</creatorcontrib><creatorcontrib>Reichart, D.</creatorcontrib><creatorcontrib>Smith, Nathan</creatorcontrib><creatorcontrib>Wang, Lingzhi</creatorcontrib><creatorcontrib>Wyatt, S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sand, D. J.</au><au>Sarbadhicary, S. K.</au><au>Pellegrino, C.</au><au>Misra, K.</au><au>Dastidar, R.</au><au>Brown, P. J.</au><au>Itagaki, K.</au><au>Valenti, S.</au><au>Swift, Jonathan J.</au><au>Andrews, J. E.</au><au>Bostroem, K. A.</au><au>Burke, J.</au><au>Chomiuk, L.</au><au>Dong, Y.</au><au>Galbany, L.</au><au>Graham, M. L.</au><au>Hiramatsu, D.</au><au>Howell, D. A.</au><au>Hsiao, E. Y.</au><au>Janzen, D.</au><au>Jencson, J. E.</au><au>Lundquist, M. J.</au><au>McCully, C.</au><au>Reichart, D.</au><au>Smith, Nathan</au><au>Wang, Lingzhi</au><au>Wyatt, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>922</volume><issue>1</issue><spage>21</spage><pages>21-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract><![CDATA[We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.]]></abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac20da</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0549-3281</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0003-1039-2928</orcidid><orcidid>https://orcid.org/0000-0003-2732-4956</orcidid><orcidid>https://orcid.org/0000-0002-7472-1279</orcidid><orcidid>https://orcid.org/0000-0003-4253-656X</orcidid><orcidid>https://orcid.org/0000-0001-6191-7160</orcidid><orcidid>https://orcid.org/0000-0001-8818-0795</orcidid><orcidid>https://orcid.org/0000-0002-4781-7291</orcidid><orcidid>https://orcid.org/0000-0002-4924-444X</orcidid><orcidid>https://orcid.org/0000-0002-1125-9187</orcidid><orcidid>https://orcid.org/0000-0003-0035-6659</orcidid><orcidid>https://orcid.org/0000-0003-4102-380X</orcidid><orcidid>https://orcid.org/0000-0002-9486-818X</orcidid><orcidid>https://orcid.org/0000-0003-1637-267X</orcidid><orcidid>https://orcid.org/0000-0002-5060-3673</orcidid><orcidid>https://orcid.org/0000-0001-5754-4007</orcidid><orcidid>https://orcid.org/0000-0001-6272-5507</orcidid><orcidid>https://orcid.org/0000-0001-9589-3793</orcidid><orcidid>https://orcid.org/0000-0001-5807-7893</orcidid><orcidid>https://orcid.org/0000-0002-1094-3817</orcidid><orcidid>https://orcid.org/0000-0003-0123-0062</orcidid><orcidid>https://orcid.org/0000-0002-8400-3705</orcidid><orcidid>https://orcid.org/0000-0001-5510-2424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-11, Vol.922 (1), p.21
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac20da
source IOP Publishing Free Content
subjects Astrophysics
Circumstellar matter
Density
Deposition
Explosions
Helium
Hydrogen
Lagrangian equilibrium points
Luminosity
Radio observation
Spectroscopy
Supernova
Supernovae
Type Ia supernovae
Wind speed
Wind velocities
X-ray astronomy
X-ray emissions
X-rays
title Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circumstellar%20Medium%20Constraints%20on%20the%20Environment%20of%20Two%20Nearby%20Type%20Ia%20Supernovae:%20SN%202017cbv%20and%20SN%202020nlb&rft.jtitle=The%20Astrophysical%20journal&rft.au=Sand,%20D.%20J.&rft.date=2021-11-01&rft.volume=922&rft.issue=1&rft.spage=21&rft.pages=21-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac20da&rft_dat=%3Cproquest_O3W%3E2597843421%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597843421&rft_id=info:pmid/&rfr_iscdi=true