Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement
In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-11, Vol.922 (1), p.14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | The Astrophysical journal |
container_volume | 922 |
creator | Pang, Peter T. H. Tews, Ingo Coughlin, Michael W. Bulla, Mattia Van Den Broeck, Chris Dietrich, Tim |
description | In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4
M
⊙
, probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4
M
⊙
NS to be
11.94
−
0.87
+
0.76
km
at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs. |
doi_str_mv | 10.3847/1538-4357/ac19ab |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac19ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597843199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a0b3c35b1cad70a8580399d312800a1d2e694119490c39961dbc07a0832b91683</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EEkNhz9ICdiX0Ok7imN1oGKCoHaoWEDvLcTwzHs3YqX-EumPNG_B6PAmOUrUbxMr67j06tvUh9JzAG9pW7ITUtC0qWrMTqQiX3QM0uxs9RDMAqIqGsu-P0ZMQdmMsOZ-hX6uk9lp6fLG9CUYFfJ720Rx0CNputMfzEL0bbncLZ3OUxsaAncVxq_FKpwxYfBWzY3mdZDQ5ufU4iPotnve9sRu8Ol0sL__8_B3wxdUl_gSsguOmKQGfaxmS1wdt41P0aC33QT-7PY_Q1_fLL4uPxdnnD6eL-VmhauCxkNBRReuOKNkzkG3dAuW8p6RsASTpS93wihBecVB50ZC-U8AktLTsOGlaeoReT97wQw-pE4M3B-lvhJNGvDPf5sL5jQhJEM7rmmb8xYS7EI0IykSttspZq1UUJFspYxl6OUGDd9dJhyh2LnmbvyHKmrO2otmWKZgo5V0IXq_v7iYgxhbFWJkYKxNTi_ePNW64d_4Hf_UPXA47wctSEEEqMfRr-hdK9KoM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597843199</pqid></control><display><type>article</type><title>Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement</title><source>IOP Publishing Free Content</source><creator>Pang, Peter T. H. ; Tews, Ingo ; Coughlin, Michael W. ; Bulla, Mattia ; Van Den Broeck, Chris ; Dietrich, Tim</creator><creatorcontrib>Pang, Peter T. H. ; Tews, Ingo ; Coughlin, Michael W. ; Bulla, Mattia ; Van Den Broeck, Chris ; Dietrich, Tim ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4
M
⊙
, probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4
M
⊙
NS to be
11.94
−
0.87
+
0.76
km
at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac19ab</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>60 APPLIED LIFE SCIENCES ; Astrophysics ; atomic, nuclear and particle physics ; Constraints ; Density ; Equations of state ; Gamma ray bursts ; Gamma rays ; Gravitational waves ; neutron star core ; Neutron star cores ; Neutron stars ; Neutrons ; Nuclear matter ; Nuclear physics ; Phase transitions ; Physics ; Pulsars ; Radio observation ; Saturation ; Stars & galaxies ; stellar mergers ; Telescopes ; Upper bounds ; X-ray astronomy</subject><ispartof>The Astrophysical journal, 2021-11, Vol.922 (1), p.14</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a0b3c35b1cad70a8580399d312800a1d2e694119490c39961dbc07a0832b91683</citedby><cites>FETCH-LOGICAL-c509t-a0b3c35b1cad70a8580399d312800a1d2e694119490c39961dbc07a0832b91683</cites><orcidid>0000-0002-8255-5127 ; 0000-0001-7041-3239 ; 0000-0003-2374-307X ; 0000-0002-8262-2924 ; 0000-0001-6800-4006 ; 0000-0003-2656-6355 ; 000000032374307X ; 0000000168004006 ; 0000000282622924 ; 0000000282555127 ; 0000000170413239 ; 0000000326566355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac19ab/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac19ab$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1832377$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-199553$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Peter T. H.</creatorcontrib><creatorcontrib>Tews, Ingo</creatorcontrib><creatorcontrib>Coughlin, Michael W.</creatorcontrib><creatorcontrib>Bulla, Mattia</creatorcontrib><creatorcontrib>Van Den Broeck, Chris</creatorcontrib><creatorcontrib>Dietrich, Tim</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4
M
⊙
, probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4
M
⊙
NS to be
11.94
−
0.87
+
0.76
km
at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Astrophysics</subject><subject>atomic, nuclear and particle physics</subject><subject>Constraints</subject><subject>Density</subject><subject>Equations of state</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>Gravitational waves</subject><subject>neutron star core</subject><subject>Neutron star cores</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear matter</subject><subject>Nuclear physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Pulsars</subject><subject>Radio observation</subject><subject>Saturation</subject><subject>Stars & galaxies</subject><subject>stellar mergers</subject><subject>Telescopes</subject><subject>Upper bounds</subject><subject>X-ray astronomy</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EEkNhz9ICdiX0Ok7imN1oGKCoHaoWEDvLcTwzHs3YqX-EumPNG_B6PAmOUrUbxMr67j06tvUh9JzAG9pW7ITUtC0qWrMTqQiX3QM0uxs9RDMAqIqGsu-P0ZMQdmMsOZ-hX6uk9lp6fLG9CUYFfJ720Rx0CNputMfzEL0bbncLZ3OUxsaAncVxq_FKpwxYfBWzY3mdZDQ5ufU4iPotnve9sRu8Ol0sL__8_B3wxdUl_gSsguOmKQGfaxmS1wdt41P0aC33QT-7PY_Q1_fLL4uPxdnnD6eL-VmhauCxkNBRReuOKNkzkG3dAuW8p6RsASTpS93wihBecVB50ZC-U8AktLTsOGlaeoReT97wQw-pE4M3B-lvhJNGvDPf5sL5jQhJEM7rmmb8xYS7EI0IykSttspZq1UUJFspYxl6OUGDd9dJhyh2LnmbvyHKmrO2otmWKZgo5V0IXq_v7iYgxhbFWJkYKxNTi_ePNW64d_4Hf_UPXA47wctSEEEqMfRr-hdK9KoM</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Pang, Peter T. H.</creator><creator>Tews, Ingo</creator><creator>Coughlin, Michael W.</creator><creator>Bulla, Mattia</creator><creator>Van Den Broeck, Chris</creator><creator>Dietrich, Tim</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-8255-5127</orcidid><orcidid>https://orcid.org/0000-0001-7041-3239</orcidid><orcidid>https://orcid.org/0000-0003-2374-307X</orcidid><orcidid>https://orcid.org/0000-0002-8262-2924</orcidid><orcidid>https://orcid.org/0000-0001-6800-4006</orcidid><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/000000032374307X</orcidid><orcidid>https://orcid.org/0000000168004006</orcidid><orcidid>https://orcid.org/0000000282622924</orcidid><orcidid>https://orcid.org/0000000282555127</orcidid><orcidid>https://orcid.org/0000000170413239</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid></search><sort><creationdate>20211101</creationdate><title>Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement</title><author>Pang, Peter T. H. ; Tews, Ingo ; Coughlin, Michael W. ; Bulla, Mattia ; Van Den Broeck, Chris ; Dietrich, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a0b3c35b1cad70a8580399d312800a1d2e694119490c39961dbc07a0832b91683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Astrophysics</topic><topic>atomic, nuclear and particle physics</topic><topic>Constraints</topic><topic>Density</topic><topic>Equations of state</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>Gravitational waves</topic><topic>neutron star core</topic><topic>Neutron star cores</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear matter</topic><topic>Nuclear physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Pulsars</topic><topic>Radio observation</topic><topic>Saturation</topic><topic>Stars & galaxies</topic><topic>stellar mergers</topic><topic>Telescopes</topic><topic>Upper bounds</topic><topic>X-ray astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Peter T. H.</creatorcontrib><creatorcontrib>Tews, Ingo</creatorcontrib><creatorcontrib>Coughlin, Michael W.</creatorcontrib><creatorcontrib>Bulla, Mattia</creatorcontrib><creatorcontrib>Van Den Broeck, Chris</creatorcontrib><creatorcontrib>Dietrich, Tim</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pang, Peter T. H.</au><au>Tews, Ingo</au><au>Coughlin, Michael W.</au><au>Bulla, Mattia</au><au>Van Den Broeck, Chris</au><au>Dietrich, Tim</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>922</volume><issue>1</issue><spage>14</spage><pages>14-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4
M
⊙
, probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4
M
⊙
NS to be
11.94
−
0.87
+
0.76
km
at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac19ab</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8255-5127</orcidid><orcidid>https://orcid.org/0000-0001-7041-3239</orcidid><orcidid>https://orcid.org/0000-0003-2374-307X</orcidid><orcidid>https://orcid.org/0000-0002-8262-2924</orcidid><orcidid>https://orcid.org/0000-0001-6800-4006</orcidid><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/000000032374307X</orcidid><orcidid>https://orcid.org/0000000168004006</orcidid><orcidid>https://orcid.org/0000000282622924</orcidid><orcidid>https://orcid.org/0000000282555127</orcidid><orcidid>https://orcid.org/0000000170413239</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-11, Vol.922 (1), p.14 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ac19ab |
source | IOP Publishing Free Content |
subjects | 60 APPLIED LIFE SCIENCES Astrophysics atomic, nuclear and particle physics Constraints Density Equations of state Gamma ray bursts Gamma rays Gravitational waves neutron star core Neutron star cores Neutron stars Neutrons Nuclear matter Nuclear physics Phase transitions Physics Pulsars Radio observation Saturation Stars & galaxies stellar mergers Telescopes Upper bounds X-ray astronomy |
title | Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Physics%20Multimessenger%20Astrophysics%20Constraints%20on%20the%20Neutron%20Star%20Equation%20of%20State:%20Adding%20NICER%E2%80%99s%20PSR%20J0740+6620%20Measurement&rft.jtitle=The%20Astrophysical%20journal&rft.au=Pang,%20Peter%20T.%20H.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-11-01&rft.volume=922&rft.issue=1&rft.spage=14&rft.pages=14-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac19ab&rft_dat=%3Cproquest_O3W%3E2597843199%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597843199&rft_id=info:pmid/&rfr_iscdi=true |