Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement

In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-11, Vol.922 (1), p.14
Hauptverfasser: Pang, Peter T. H., Tews, Ingo, Coughlin, Michael W., Bulla, Mattia, Van Den Broeck, Chris, Dietrich, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 14
container_title The Astrophysical journal
container_volume 922
creator Pang, Peter T. H.
Tews, Ingo
Coughlin, Michael W.
Bulla, Mattia
Van Den Broeck, Chris
Dietrich, Tim
description In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4 M ⊙ , probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4 M ⊙ NS to be 11.94 − 0.87 + 0.76 km at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.
doi_str_mv 10.3847/1538-4357/ac19ab
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac19ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597843199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a0b3c35b1cad70a8580399d312800a1d2e694119490c39961dbc07a0832b91683</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EEkNhz9ICdiX0Ok7imN1oGKCoHaoWEDvLcTwzHs3YqX-EumPNG_B6PAmOUrUbxMr67j06tvUh9JzAG9pW7ITUtC0qWrMTqQiX3QM0uxs9RDMAqIqGsu-P0ZMQdmMsOZ-hX6uk9lp6fLG9CUYFfJ720Rx0CNputMfzEL0bbncLZ3OUxsaAncVxq_FKpwxYfBWzY3mdZDQ5ufU4iPotnve9sRu8Ol0sL__8_B3wxdUl_gSsguOmKQGfaxmS1wdt41P0aC33QT-7PY_Q1_fLL4uPxdnnD6eL-VmhauCxkNBRReuOKNkzkG3dAuW8p6RsASTpS93wihBecVB50ZC-U8AktLTsOGlaeoReT97wQw-pE4M3B-lvhJNGvDPf5sL5jQhJEM7rmmb8xYS7EI0IykSttspZq1UUJFspYxl6OUGDd9dJhyh2LnmbvyHKmrO2otmWKZgo5V0IXq_v7iYgxhbFWJkYKxNTi_ePNW64d_4Hf_UPXA47wctSEEEqMfRr-hdK9KoM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597843199</pqid></control><display><type>article</type><title>Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement</title><source>IOP Publishing Free Content</source><creator>Pang, Peter T. H. ; Tews, Ingo ; Coughlin, Michael W. ; Bulla, Mattia ; Van Den Broeck, Chris ; Dietrich, Tim</creator><creatorcontrib>Pang, Peter T. H. ; Tews, Ingo ; Coughlin, Michael W. ; Bulla, Mattia ; Van Den Broeck, Chris ; Dietrich, Tim ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4 M ⊙ , probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4 M ⊙ NS to be 11.94 − 0.87 + 0.76 km at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac19ab</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>60 APPLIED LIFE SCIENCES ; Astrophysics ; atomic, nuclear and particle physics ; Constraints ; Density ; Equations of state ; Gamma ray bursts ; Gamma rays ; Gravitational waves ; neutron star core ; Neutron star cores ; Neutron stars ; Neutrons ; Nuclear matter ; Nuclear physics ; Phase transitions ; Physics ; Pulsars ; Radio observation ; Saturation ; Stars &amp; galaxies ; stellar mergers ; Telescopes ; Upper bounds ; X-ray astronomy</subject><ispartof>The Astrophysical journal, 2021-11, Vol.922 (1), p.14</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a0b3c35b1cad70a8580399d312800a1d2e694119490c39961dbc07a0832b91683</citedby><cites>FETCH-LOGICAL-c509t-a0b3c35b1cad70a8580399d312800a1d2e694119490c39961dbc07a0832b91683</cites><orcidid>0000-0002-8255-5127 ; 0000-0001-7041-3239 ; 0000-0003-2374-307X ; 0000-0002-8262-2924 ; 0000-0001-6800-4006 ; 0000-0003-2656-6355 ; 000000032374307X ; 0000000168004006 ; 0000000282622924 ; 0000000282555127 ; 0000000170413239 ; 0000000326566355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac19ab/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac19ab$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1832377$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-199553$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Peter T. H.</creatorcontrib><creatorcontrib>Tews, Ingo</creatorcontrib><creatorcontrib>Coughlin, Michael W.</creatorcontrib><creatorcontrib>Bulla, Mattia</creatorcontrib><creatorcontrib>Van Den Broeck, Chris</creatorcontrib><creatorcontrib>Dietrich, Tim</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4 M ⊙ , probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4 M ⊙ NS to be 11.94 − 0.87 + 0.76 km at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Astrophysics</subject><subject>atomic, nuclear and particle physics</subject><subject>Constraints</subject><subject>Density</subject><subject>Equations of state</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>Gravitational waves</subject><subject>neutron star core</subject><subject>Neutron star cores</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear matter</subject><subject>Nuclear physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Pulsars</subject><subject>Radio observation</subject><subject>Saturation</subject><subject>Stars &amp; galaxies</subject><subject>stellar mergers</subject><subject>Telescopes</subject><subject>Upper bounds</subject><subject>X-ray astronomy</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EEkNhz9ICdiX0Ok7imN1oGKCoHaoWEDvLcTwzHs3YqX-EumPNG_B6PAmOUrUbxMr67j06tvUh9JzAG9pW7ITUtC0qWrMTqQiX3QM0uxs9RDMAqIqGsu-P0ZMQdmMsOZ-hX6uk9lp6fLG9CUYFfJ720Rx0CNputMfzEL0bbncLZ3OUxsaAncVxq_FKpwxYfBWzY3mdZDQ5ufU4iPotnve9sRu8Ol0sL__8_B3wxdUl_gSsguOmKQGfaxmS1wdt41P0aC33QT-7PY_Q1_fLL4uPxdnnD6eL-VmhauCxkNBRReuOKNkzkG3dAuW8p6RsASTpS93wihBecVB50ZC-U8AktLTsOGlaeoReT97wQw-pE4M3B-lvhJNGvDPf5sL5jQhJEM7rmmb8xYS7EI0IykSttspZq1UUJFspYxl6OUGDd9dJhyh2LnmbvyHKmrO2otmWKZgo5V0IXq_v7iYgxhbFWJkYKxNTi_ePNW64d_4Hf_UPXA47wctSEEEqMfRr-hdK9KoM</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Pang, Peter T. H.</creator><creator>Tews, Ingo</creator><creator>Coughlin, Michael W.</creator><creator>Bulla, Mattia</creator><creator>Van Den Broeck, Chris</creator><creator>Dietrich, Tim</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-8255-5127</orcidid><orcidid>https://orcid.org/0000-0001-7041-3239</orcidid><orcidid>https://orcid.org/0000-0003-2374-307X</orcidid><orcidid>https://orcid.org/0000-0002-8262-2924</orcidid><orcidid>https://orcid.org/0000-0001-6800-4006</orcidid><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/000000032374307X</orcidid><orcidid>https://orcid.org/0000000168004006</orcidid><orcidid>https://orcid.org/0000000282622924</orcidid><orcidid>https://orcid.org/0000000282555127</orcidid><orcidid>https://orcid.org/0000000170413239</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid></search><sort><creationdate>20211101</creationdate><title>Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement</title><author>Pang, Peter T. H. ; Tews, Ingo ; Coughlin, Michael W. ; Bulla, Mattia ; Van Den Broeck, Chris ; Dietrich, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a0b3c35b1cad70a8580399d312800a1d2e694119490c39961dbc07a0832b91683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Astrophysics</topic><topic>atomic, nuclear and particle physics</topic><topic>Constraints</topic><topic>Density</topic><topic>Equations of state</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>Gravitational waves</topic><topic>neutron star core</topic><topic>Neutron star cores</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear matter</topic><topic>Nuclear physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Pulsars</topic><topic>Radio observation</topic><topic>Saturation</topic><topic>Stars &amp; galaxies</topic><topic>stellar mergers</topic><topic>Telescopes</topic><topic>Upper bounds</topic><topic>X-ray astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Peter T. H.</creatorcontrib><creatorcontrib>Tews, Ingo</creatorcontrib><creatorcontrib>Coughlin, Michael W.</creatorcontrib><creatorcontrib>Bulla, Mattia</creatorcontrib><creatorcontrib>Van Den Broeck, Chris</creatorcontrib><creatorcontrib>Dietrich, Tim</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pang, Peter T. H.</au><au>Tews, Ingo</au><au>Coughlin, Michael W.</au><au>Bulla, Mattia</au><au>Van Den Broeck, Chris</au><au>Dietrich, Tim</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>922</volume><issue>1</issue><spage>14</spage><pages>14-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4 M ⊙ , probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4 M ⊙ NS to be 11.94 − 0.87 + 0.76 km at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac19ab</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8255-5127</orcidid><orcidid>https://orcid.org/0000-0001-7041-3239</orcidid><orcidid>https://orcid.org/0000-0003-2374-307X</orcidid><orcidid>https://orcid.org/0000-0002-8262-2924</orcidid><orcidid>https://orcid.org/0000-0001-6800-4006</orcidid><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/000000032374307X</orcidid><orcidid>https://orcid.org/0000000168004006</orcidid><orcidid>https://orcid.org/0000000282622924</orcidid><orcidid>https://orcid.org/0000000282555127</orcidid><orcidid>https://orcid.org/0000000170413239</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-11, Vol.922 (1), p.14
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac19ab
source IOP Publishing Free Content
subjects 60 APPLIED LIFE SCIENCES
Astrophysics
atomic, nuclear and particle physics
Constraints
Density
Equations of state
Gamma ray bursts
Gamma rays
Gravitational waves
neutron star core
Neutron star cores
Neutron stars
Neutrons
Nuclear matter
Nuclear physics
Phase transitions
Physics
Pulsars
Radio observation
Saturation
Stars & galaxies
stellar mergers
Telescopes
Upper bounds
X-ray astronomy
title Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Physics%20Multimessenger%20Astrophysics%20Constraints%20on%20the%20Neutron%20Star%20Equation%20of%20State:%20Adding%20NICER%E2%80%99s%20PSR%20J0740+6620%20Measurement&rft.jtitle=The%20Astrophysical%20journal&rft.au=Pang,%20Peter%20T.%20H.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-11-01&rft.volume=922&rft.issue=1&rft.spage=14&rft.pages=14-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac19ab&rft_dat=%3Cproquest_O3W%3E2597843199%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597843199&rft_id=info:pmid/&rfr_iscdi=true