Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds
Recent observations of molecular clouds show that dense filaments are the sites of present-day star formation. Thus, it is necessary to understand the filament formation process because these filaments provide the initial condition for star formation. Theoretical research suggests that shock waves i...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-08, Vol.916 (2), p.83 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 83 |
container_title | The Astrophysical journal |
container_volume | 916 |
creator | Abe, Daisei Inoue, Tsuyoshi Inutsuka, Shu-ichiro Matsumoto, Tomoaki |
description | Recent observations of molecular clouds show that dense filaments are the sites of present-day star formation. Thus, it is necessary to understand the filament formation process because these filaments provide the initial condition for star formation. Theoretical research suggests that shock waves in molecular clouds trigger filament formation. Since several different mechanisms have been proposed for filament formation, the formation mechanism of the observed star-forming filaments requires clarification. In the present study, we perform a series of isothermal magnetohydrodynamics simulations of filament formation. We focus on the influences of shock velocity and turbulence on the formation mechanism and identified three different mechanisms for the filament formation. The results indicate that when the shock is fast, at shock velocity
v
sh
≃ 7 km s
−1
, the gas flows driven by the curved shock wave create filaments irrespective of the presence of turbulence and self-gravity. However, at a slow shock velocity
v
sh
≃ 2.5 km s
−1
, the compressive flow component involved in the initial turbulence induces filament formation. When both the shock velocities and turbulence are low, the self-gravity in the shock-compressed sheet becomes important for filament formation. Moreover, we analyzed the line-mass distribution of the filaments and showed that strong shock waves can naturally create high-line-mass filaments such as those observed in the massive star-forming regions in a short time. We conclude that the dominant filament formation mode changes with the velocity of the shock wave triggering the filament formation. |
doi_str_mv | 10.3847/1538-4357/ac07a1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac07a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569678753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-16f6991f97fa9d4ca914e5c4a5f26731fa3d05951f427996ba350744992bd20c3</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EEqWwM0ZiJdSOv-oRRbQgtbCAxGa9Oja4SuJiJwP89SQKgonp6U5396QfQpcE39AlkwvC6TJnlMsFGCyBHKHZr3WMZhhjlgsqX0_RWUr7URZKzdBjWUNK3nkDnQ9tFly28jU0tu2yVYjN5G6teYfWpyZlflDw1trOf9kq24bamr6GmJV16Kt0jk4c1Mle_Nw5elndPZf3-eZp_VDebnLDiOhyIpxQijglHaiKGVCEWW4YcFcISYkDWmGuOHGskEqJHVCOJWNKFbuqwIbO0dW0e4jho7ep0_vQx3Z4qQsulJBLyemQwlPKxJBStE4fom8gfmqC9UhNj4j0iEhP1IbK9VTx4fC3-W_8G_b8bUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569678753</pqid></control><display><type>article</type><title>Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Abe, Daisei ; Inoue, Tsuyoshi ; Inutsuka, Shu-ichiro ; Matsumoto, Tomoaki</creator><creatorcontrib>Abe, Daisei ; Inoue, Tsuyoshi ; Inutsuka, Shu-ichiro ; Matsumoto, Tomoaki</creatorcontrib><description>Recent observations of molecular clouds show that dense filaments are the sites of present-day star formation. Thus, it is necessary to understand the filament formation process because these filaments provide the initial condition for star formation. Theoretical research suggests that shock waves in molecular clouds trigger filament formation. Since several different mechanisms have been proposed for filament formation, the formation mechanism of the observed star-forming filaments requires clarification. In the present study, we perform a series of isothermal magnetohydrodynamics simulations of filament formation. We focus on the influences of shock velocity and turbulence on the formation mechanism and identified three different mechanisms for the filament formation. The results indicate that when the shock is fast, at shock velocity
v
sh
≃ 7 km s
−1
, the gas flows driven by the curved shock wave create filaments irrespective of the presence of turbulence and self-gravity. However, at a slow shock velocity
v
sh
≃ 2.5 km s
−1
, the compressive flow component involved in the initial turbulence induces filament formation. When both the shock velocities and turbulence are low, the self-gravity in the shock-compressed sheet becomes important for filament formation. Moreover, we analyzed the line-mass distribution of the filaments and showed that strong shock waves can naturally create high-line-mass filaments such as those observed in the massive star-forming regions in a short time. We conclude that the dominant filament formation mode changes with the velocity of the shock wave triggering the filament formation.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac07a1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cloud formation ; Clouds ; Filaments ; Fluid dynamics ; Gas flow ; Interstellar clouds ; Magnetohydrodynamic simulation ; Magnetohydrodynamic turbulence ; Magnetohydrodynamics ; Mass distribution ; Massive stars ; Molecular clouds ; Shock waves ; Star & galaxy formation ; Star formation ; Turbulence ; Turbulent flow ; Velocity</subject><ispartof>The Astrophysical journal, 2021-08, Vol.916 (2), p.83</ispartof><rights>2021. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright IOP Publishing Aug 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-16f6991f97fa9d4ca914e5c4a5f26731fa3d05951f427996ba350744992bd20c3</citedby><cites>FETCH-LOGICAL-c416t-16f6991f97fa9d4ca914e5c4a5f26731fa3d05951f427996ba350744992bd20c3</cites><orcidid>0000-0001-6891-2995 ; 0000-0003-4366-6518 ; 0000-0002-8125-4509 ; 0000-0002-7935-8771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac07a1/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38871,53848</link.rule.ids></links><search><creatorcontrib>Abe, Daisei</creatorcontrib><creatorcontrib>Inoue, Tsuyoshi</creatorcontrib><creatorcontrib>Inutsuka, Shu-ichiro</creatorcontrib><creatorcontrib>Matsumoto, Tomoaki</creatorcontrib><title>Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Recent observations of molecular clouds show that dense filaments are the sites of present-day star formation. Thus, it is necessary to understand the filament formation process because these filaments provide the initial condition for star formation. Theoretical research suggests that shock waves in molecular clouds trigger filament formation. Since several different mechanisms have been proposed for filament formation, the formation mechanism of the observed star-forming filaments requires clarification. In the present study, we perform a series of isothermal magnetohydrodynamics simulations of filament formation. We focus on the influences of shock velocity and turbulence on the formation mechanism and identified three different mechanisms for the filament formation. The results indicate that when the shock is fast, at shock velocity
v
sh
≃ 7 km s
−1
, the gas flows driven by the curved shock wave create filaments irrespective of the presence of turbulence and self-gravity. However, at a slow shock velocity
v
sh
≃ 2.5 km s
−1
, the compressive flow component involved in the initial turbulence induces filament formation. When both the shock velocities and turbulence are low, the self-gravity in the shock-compressed sheet becomes important for filament formation. Moreover, we analyzed the line-mass distribution of the filaments and showed that strong shock waves can naturally create high-line-mass filaments such as those observed in the massive star-forming regions in a short time. We conclude that the dominant filament formation mode changes with the velocity of the shock wave triggering the filament formation.</description><subject>Astrophysics</subject><subject>Cloud formation</subject><subject>Clouds</subject><subject>Filaments</subject><subject>Fluid dynamics</subject><subject>Gas flow</subject><subject>Interstellar clouds</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamics</subject><subject>Mass distribution</subject><subject>Massive stars</subject><subject>Molecular clouds</subject><subject>Shock waves</subject><subject>Star & galaxy formation</subject><subject>Star formation</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kL1PwzAUxC0EEqWwM0ZiJdSOv-oRRbQgtbCAxGa9Oja4SuJiJwP89SQKgonp6U5396QfQpcE39AlkwvC6TJnlMsFGCyBHKHZr3WMZhhjlgsqX0_RWUr7URZKzdBjWUNK3nkDnQ9tFly28jU0tu2yVYjN5G6teYfWpyZlflDw1trOf9kq24bamr6GmJV16Kt0jk4c1Mle_Nw5elndPZf3-eZp_VDebnLDiOhyIpxQijglHaiKGVCEWW4YcFcISYkDWmGuOHGskEqJHVCOJWNKFbuqwIbO0dW0e4jho7ep0_vQx3Z4qQsulJBLyemQwlPKxJBStE4fom8gfmqC9UhNj4j0iEhP1IbK9VTx4fC3-W_8G_b8bUQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Abe, Daisei</creator><creator>Inoue, Tsuyoshi</creator><creator>Inutsuka, Shu-ichiro</creator><creator>Matsumoto, Tomoaki</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6891-2995</orcidid><orcidid>https://orcid.org/0000-0003-4366-6518</orcidid><orcidid>https://orcid.org/0000-0002-8125-4509</orcidid><orcidid>https://orcid.org/0000-0002-7935-8771</orcidid></search><sort><creationdate>20210801</creationdate><title>Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds</title><author>Abe, Daisei ; Inoue, Tsuyoshi ; Inutsuka, Shu-ichiro ; Matsumoto, Tomoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-16f6991f97fa9d4ca914e5c4a5f26731fa3d05951f427996ba350744992bd20c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Cloud formation</topic><topic>Clouds</topic><topic>Filaments</topic><topic>Fluid dynamics</topic><topic>Gas flow</topic><topic>Interstellar clouds</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamics</topic><topic>Mass distribution</topic><topic>Massive stars</topic><topic>Molecular clouds</topic><topic>Shock waves</topic><topic>Star & galaxy formation</topic><topic>Star formation</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Daisei</creatorcontrib><creatorcontrib>Inoue, Tsuyoshi</creatorcontrib><creatorcontrib>Inutsuka, Shu-ichiro</creatorcontrib><creatorcontrib>Matsumoto, Tomoaki</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Daisei</au><au>Inoue, Tsuyoshi</au><au>Inutsuka, Shu-ichiro</au><au>Matsumoto, Tomoaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>916</volume><issue>2</issue><spage>83</spage><pages>83-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Recent observations of molecular clouds show that dense filaments are the sites of present-day star formation. Thus, it is necessary to understand the filament formation process because these filaments provide the initial condition for star formation. Theoretical research suggests that shock waves in molecular clouds trigger filament formation. Since several different mechanisms have been proposed for filament formation, the formation mechanism of the observed star-forming filaments requires clarification. In the present study, we perform a series of isothermal magnetohydrodynamics simulations of filament formation. We focus on the influences of shock velocity and turbulence on the formation mechanism and identified three different mechanisms for the filament formation. The results indicate that when the shock is fast, at shock velocity
v
sh
≃ 7 km s
−1
, the gas flows driven by the curved shock wave create filaments irrespective of the presence of turbulence and self-gravity. However, at a slow shock velocity
v
sh
≃ 2.5 km s
−1
, the compressive flow component involved in the initial turbulence induces filament formation. When both the shock velocities and turbulence are low, the self-gravity in the shock-compressed sheet becomes important for filament formation. Moreover, we analyzed the line-mass distribution of the filaments and showed that strong shock waves can naturally create high-line-mass filaments such as those observed in the massive star-forming regions in a short time. We conclude that the dominant filament formation mode changes with the velocity of the shock wave triggering the filament formation.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac07a1</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6891-2995</orcidid><orcidid>https://orcid.org/0000-0003-4366-6518</orcidid><orcidid>https://orcid.org/0000-0002-8125-4509</orcidid><orcidid>https://orcid.org/0000-0002-7935-8771</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-08, Vol.916 (2), p.83 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ac07a1 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Astrophysics Cloud formation Clouds Filaments Fluid dynamics Gas flow Interstellar clouds Magnetohydrodynamic simulation Magnetohydrodynamic turbulence Magnetohydrodynamics Mass distribution Massive stars Molecular clouds Shock waves Star & galaxy formation Star formation Turbulence Turbulent flow Velocity |
title | Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Filament%20Formation%20Mechanisms%20in%20Magnetized%20Molecular%20Clouds&rft.jtitle=The%20Astrophysical%20journal&rft.au=Abe,%20Daisei&rft.date=2021-08-01&rft.volume=916&rft.issue=2&rft.spage=83&rft.pages=83-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac07a1&rft_dat=%3Cproquest_cross%3E2569678753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569678753&rft_id=info:pmid/&rfr_iscdi=true |