Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning

Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot draw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-02, Vol.907 (2), p.118
Hauptverfasser: Lee, Harim, Park, Eunsu, Moon, Yong-Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 118
container_title The Astrophysical journal
container_volume 907
creator Lee, Harim
Park, Eunsu
Moon, Yong-Jae
description Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawings from the Mount Wilson Observatory and their corresponding magnetograms (or UV/EUV images) from 2011 to 2015 except for every June and December by the Solar Dynamic Observatory satellite. We evaluate the model by comparing pairs of actual magnetograms (or UV/EUV images) and the corresponding AI-generated ones in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate Helioseismic and Magnetic Imager-like magnetograms and Atmospheric Imaging Assembly-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times.
doi_str_mv 10.3847/1538-4357/abce5f
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_abce5f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487455337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-c5ff45f5d3e1a5fb0955a43475ad495c30d0fea0508564cc51a848a7b40254bf3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQRoMouK7ePQbEm3WTJtO0R9nVVVjxsAriJUzbRLp0m5p0kf33tlT0oqdhZt58A4-Qc86uRSrVjINIIylAzTAvDNgDMvkZHZIJY0xGiVCvx-QkhM3Qxlk2IW9L0xiPXeUa6ix9dKXxDV1jZ-q66gxdYIfUerelS6yr2ji63jWhdR1dePysmvdAq4byhMc039OFMS1dGfRNvzklRxbrYM6-65S83N0-z--j1dPyYX6zigopky4qwFoJFkphOILNWQaAUkgFWMoMCsFKZg0yYCkksiiAYypTVLlkMcjciim5GHNb7z52JnR643a-6V_qWKZKAgiheoqNVOFdCN5Y3fpqi36vOdODQT3o0oMuPRrsTy7Hk8q1v5nYbnTGlI4156luy4G7-oP7N_YLPsx-dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487455337</pqid></control><display><type>article</type><title>Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning</title><source>IOP Publishing Free Content</source><creator>Lee, Harim ; Park, Eunsu ; Moon, Yong-Jae</creator><creatorcontrib>Lee, Harim ; Park, Eunsu ; Moon, Yong-Jae</creatorcontrib><description>Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawings from the Mount Wilson Observatory and their corresponding magnetograms (or UV/EUV images) from 2011 to 2015 except for every June and December by the Solar Dynamic Observatory satellite. We evaluate the model by comparing pairs of actual magnetograms (or UV/EUV images) and the corresponding AI-generated ones in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate Helioseismic and Magnetic Imager-like magnetograms and Atmospheric Imaging Assembly-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abce5f</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Deep learning ; Irradiance ; Magnetic flux ; Observatories ; Satellite data ; Satellite observation ; Solar active regions ; Solar activity ; Solar EUV ; Solar magnetic fields ; Sunspot cycle ; Sunspots ; The Sun</subject><ispartof>The Astrophysical journal, 2021-02, Vol.907 (2), p.118</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-c5ff45f5d3e1a5fb0955a43475ad495c30d0fea0508564cc51a848a7b40254bf3</citedby><cites>FETCH-LOGICAL-c446t-c5ff45f5d3e1a5fb0955a43475ad495c30d0fea0508564cc51a848a7b40254bf3</cites><orcidid>0000-0003-0969-286X ; 0000-0001-6216-6944 ; 0000-0002-9300-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abce5f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abce5f$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Lee, Harim</creatorcontrib><creatorcontrib>Park, Eunsu</creatorcontrib><creatorcontrib>Moon, Yong-Jae</creatorcontrib><title>Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawings from the Mount Wilson Observatory and their corresponding magnetograms (or UV/EUV images) from 2011 to 2015 except for every June and December by the Solar Dynamic Observatory satellite. We evaluate the model by comparing pairs of actual magnetograms (or UV/EUV images) and the corresponding AI-generated ones in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate Helioseismic and Magnetic Imager-like magnetograms and Atmospheric Imaging Assembly-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times.</description><subject>Astrophysics</subject><subject>Deep learning</subject><subject>Irradiance</subject><subject>Magnetic flux</subject><subject>Observatories</subject><subject>Satellite data</subject><subject>Satellite observation</subject><subject>Solar active regions</subject><subject>Solar activity</subject><subject>Solar EUV</subject><subject>Solar magnetic fields</subject><subject>Sunspot cycle</subject><subject>Sunspots</subject><subject>The Sun</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQRoMouK7ePQbEm3WTJtO0R9nVVVjxsAriJUzbRLp0m5p0kf33tlT0oqdhZt58A4-Qc86uRSrVjINIIylAzTAvDNgDMvkZHZIJY0xGiVCvx-QkhM3Qxlk2IW9L0xiPXeUa6ix9dKXxDV1jZ-q66gxdYIfUerelS6yr2ji63jWhdR1dePysmvdAq4byhMc039OFMS1dGfRNvzklRxbrYM6-65S83N0-z--j1dPyYX6zigopky4qwFoJFkphOILNWQaAUkgFWMoMCsFKZg0yYCkksiiAYypTVLlkMcjciim5GHNb7z52JnR643a-6V_qWKZKAgiheoqNVOFdCN5Y3fpqi36vOdODQT3o0oMuPRrsTy7Hk8q1v5nYbnTGlI4156luy4G7-oP7N_YLPsx-dA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lee, Harim</creator><creator>Park, Eunsu</creator><creator>Moon, Yong-Jae</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0969-286X</orcidid><orcidid>https://orcid.org/0000-0001-6216-6944</orcidid><orcidid>https://orcid.org/0000-0002-9300-8073</orcidid></search><sort><creationdate>20210201</creationdate><title>Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning</title><author>Lee, Harim ; Park, Eunsu ; Moon, Yong-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-c5ff45f5d3e1a5fb0955a43475ad495c30d0fea0508564cc51a848a7b40254bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Deep learning</topic><topic>Irradiance</topic><topic>Magnetic flux</topic><topic>Observatories</topic><topic>Satellite data</topic><topic>Satellite observation</topic><topic>Solar active regions</topic><topic>Solar activity</topic><topic>Solar EUV</topic><topic>Solar magnetic fields</topic><topic>Sunspot cycle</topic><topic>Sunspots</topic><topic>The Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Harim</creatorcontrib><creatorcontrib>Park, Eunsu</creatorcontrib><creatorcontrib>Moon, Yong-Jae</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Harim</au><au>Park, Eunsu</au><au>Moon, Yong-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>907</volume><issue>2</issue><spage>118</spage><pages>118-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawings from the Mount Wilson Observatory and their corresponding magnetograms (or UV/EUV images) from 2011 to 2015 except for every June and December by the Solar Dynamic Observatory satellite. We evaluate the model by comparing pairs of actual magnetograms (or UV/EUV images) and the corresponding AI-generated ones in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate Helioseismic and Magnetic Imager-like magnetograms and Atmospheric Imaging Assembly-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abce5f</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0969-286X</orcidid><orcidid>https://orcid.org/0000-0001-6216-6944</orcidid><orcidid>https://orcid.org/0000-0002-9300-8073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-02, Vol.907 (2), p.118
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_abce5f
source IOP Publishing Free Content
subjects Astrophysics
Deep learning
Irradiance
Magnetic flux
Observatories
Satellite data
Satellite observation
Solar active regions
Solar activity
Solar EUV
Solar magnetic fields
Sunspot cycle
Sunspots
The Sun
title Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Modern%20Satellite%20Data%20from%20Galileo%20Sunspot%20Drawings%20in%201612%20by%20Deep%20Learning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lee,%20Harim&rft.date=2021-02-01&rft.volume=907&rft.issue=2&rft.spage=118&rft.pages=118-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abce5f&rft_dat=%3Cproquest_O3W%3E2487455337%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487455337&rft_id=info:pmid/&rfr_iscdi=true