Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning
Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot draw...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-02, Vol.907 (2), p.118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 118 |
container_title | The Astrophysical journal |
container_volume | 907 |
creator | Lee, Harim Park, Eunsu Moon, Yong-Jae |
description | Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawings from the Mount Wilson Observatory and their corresponding magnetograms (or UV/EUV images) from 2011 to 2015 except for every June and December by the Solar Dynamic Observatory satellite. We evaluate the model by comparing pairs of actual magnetograms (or UV/EUV images) and the corresponding AI-generated ones in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate Helioseismic and Magnetic Imager-like magnetograms and Atmospheric Imaging Assembly-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times. |
doi_str_mv | 10.3847/1538-4357/abce5f |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_abce5f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487455337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-c5ff45f5d3e1a5fb0955a43475ad495c30d0fea0508564cc51a848a7b40254bf3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQRoMouK7ePQbEm3WTJtO0R9nVVVjxsAriJUzbRLp0m5p0kf33tlT0oqdhZt58A4-Qc86uRSrVjINIIylAzTAvDNgDMvkZHZIJY0xGiVCvx-QkhM3Qxlk2IW9L0xiPXeUa6ix9dKXxDV1jZ-q66gxdYIfUerelS6yr2ji63jWhdR1dePysmvdAq4byhMc039OFMS1dGfRNvzklRxbrYM6-65S83N0-z--j1dPyYX6zigopky4qwFoJFkphOILNWQaAUkgFWMoMCsFKZg0yYCkksiiAYypTVLlkMcjciim5GHNb7z52JnR643a-6V_qWKZKAgiheoqNVOFdCN5Y3fpqi36vOdODQT3o0oMuPRrsTy7Hk8q1v5nYbnTGlI4156luy4G7-oP7N_YLPsx-dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487455337</pqid></control><display><type>article</type><title>Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning</title><source>IOP Publishing Free Content</source><creator>Lee, Harim ; Park, Eunsu ; Moon, Yong-Jae</creator><creatorcontrib>Lee, Harim ; Park, Eunsu ; Moon, Yong-Jae</creatorcontrib><description>Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawings from the Mount Wilson Observatory and their corresponding magnetograms (or UV/EUV images) from 2011 to 2015 except for every June and December by the Solar Dynamic Observatory satellite. We evaluate the model by comparing pairs of actual magnetograms (or UV/EUV images) and the corresponding AI-generated ones in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate Helioseismic and Magnetic Imager-like magnetograms and Atmospheric Imaging Assembly-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abce5f</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Deep learning ; Irradiance ; Magnetic flux ; Observatories ; Satellite data ; Satellite observation ; Solar active regions ; Solar activity ; Solar EUV ; Solar magnetic fields ; Sunspot cycle ; Sunspots ; The Sun</subject><ispartof>The Astrophysical journal, 2021-02, Vol.907 (2), p.118</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-c5ff45f5d3e1a5fb0955a43475ad495c30d0fea0508564cc51a848a7b40254bf3</citedby><cites>FETCH-LOGICAL-c446t-c5ff45f5d3e1a5fb0955a43475ad495c30d0fea0508564cc51a848a7b40254bf3</cites><orcidid>0000-0003-0969-286X ; 0000-0001-6216-6944 ; 0000-0002-9300-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abce5f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abce5f$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Lee, Harim</creatorcontrib><creatorcontrib>Park, Eunsu</creatorcontrib><creatorcontrib>Moon, Yong-Jae</creatorcontrib><title>Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawings from the Mount Wilson Observatory and their corresponding magnetograms (or UV/EUV images) from 2011 to 2015 except for every June and December by the Solar Dynamic Observatory satellite. We evaluate the model by comparing pairs of actual magnetograms (or UV/EUV images) and the corresponding AI-generated ones in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate Helioseismic and Magnetic Imager-like magnetograms and Atmospheric Imaging Assembly-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times.</description><subject>Astrophysics</subject><subject>Deep learning</subject><subject>Irradiance</subject><subject>Magnetic flux</subject><subject>Observatories</subject><subject>Satellite data</subject><subject>Satellite observation</subject><subject>Solar active regions</subject><subject>Solar activity</subject><subject>Solar EUV</subject><subject>Solar magnetic fields</subject><subject>Sunspot cycle</subject><subject>Sunspots</subject><subject>The Sun</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQRoMouK7ePQbEm3WTJtO0R9nVVVjxsAriJUzbRLp0m5p0kf33tlT0oqdhZt58A4-Qc86uRSrVjINIIylAzTAvDNgDMvkZHZIJY0xGiVCvx-QkhM3Qxlk2IW9L0xiPXeUa6ix9dKXxDV1jZ-q66gxdYIfUerelS6yr2ji63jWhdR1dePysmvdAq4byhMc039OFMS1dGfRNvzklRxbrYM6-65S83N0-z--j1dPyYX6zigopky4qwFoJFkphOILNWQaAUkgFWMoMCsFKZg0yYCkksiiAYypTVLlkMcjciim5GHNb7z52JnR643a-6V_qWKZKAgiheoqNVOFdCN5Y3fpqi36vOdODQT3o0oMuPRrsTy7Hk8q1v5nYbnTGlI4156luy4G7-oP7N_YLPsx-dA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lee, Harim</creator><creator>Park, Eunsu</creator><creator>Moon, Yong-Jae</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0969-286X</orcidid><orcidid>https://orcid.org/0000-0001-6216-6944</orcidid><orcidid>https://orcid.org/0000-0002-9300-8073</orcidid></search><sort><creationdate>20210201</creationdate><title>Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning</title><author>Lee, Harim ; Park, Eunsu ; Moon, Yong-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-c5ff45f5d3e1a5fb0955a43475ad495c30d0fea0508564cc51a848a7b40254bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Deep learning</topic><topic>Irradiance</topic><topic>Magnetic flux</topic><topic>Observatories</topic><topic>Satellite data</topic><topic>Satellite observation</topic><topic>Solar active regions</topic><topic>Solar activity</topic><topic>Solar EUV</topic><topic>Solar magnetic fields</topic><topic>Sunspot cycle</topic><topic>Sunspots</topic><topic>The Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Harim</creatorcontrib><creatorcontrib>Park, Eunsu</creatorcontrib><creatorcontrib>Moon, Yong-Jae</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Harim</au><au>Park, Eunsu</au><au>Moon, Yong-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>907</volume><issue>2</issue><spage>118</spage><pages>118-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Historical sunspot drawings are very important resources for understanding past solar activity. We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawings from the Mount Wilson Observatory and their corresponding magnetograms (or UV/EUV images) from 2011 to 2015 except for every June and December by the Solar Dynamic Observatory satellite. We evaluate the model by comparing pairs of actual magnetograms (or UV/EUV images) and the corresponding AI-generated ones in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate Helioseismic and Magnetic Imager-like magnetograms and Atmospheric Imaging Assembly-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abce5f</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0969-286X</orcidid><orcidid>https://orcid.org/0000-0001-6216-6944</orcidid><orcidid>https://orcid.org/0000-0002-9300-8073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-02, Vol.907 (2), p.118 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_abce5f |
source | IOP Publishing Free Content |
subjects | Astrophysics Deep learning Irradiance Magnetic flux Observatories Satellite data Satellite observation Solar active regions Solar activity Solar EUV Solar magnetic fields Sunspot cycle Sunspots The Sun |
title | Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Modern%20Satellite%20Data%20from%20Galileo%20Sunspot%20Drawings%20in%201612%20by%20Deep%20Learning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lee,%20Harim&rft.date=2021-02-01&rft.volume=907&rft.issue=2&rft.spage=118&rft.pages=118-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abce5f&rft_dat=%3Cproquest_O3W%3E2487455337%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487455337&rft_id=info:pmid/&rfr_iscdi=true |