Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings

Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-12, Vol.905 (1), p.68
Hauptverfasser: Alarcón, Felipe, Teague, R., Zhang, Ke, Bergin, E. A., Barraza-Alfaro, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 68
container_title The Astrophysical journal
container_volume 905
creator Alarcón, Felipe
Teague, R.
Zhang, Ke
Bergin, E. A.
Barraza-Alfaro, M.
description Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The compositions of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas-depleted gap, the line emission depends on several different parameters, such as the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods, such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.
doi_str_mv 10.3847/1538-4357/abc1d6
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_abc1d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470049592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-d2de2fc4617b4bc0623b2e446d271022eea43b7139287d762f7fea3bccc114d33</originalsourceid><addsrcrecordid>eNp1UM9LwzAYDaLgnN49Brxal19L1qN0cwoDh0zwFtIkdZldU5N24n9va0VPnj6-9733Pt4D4BKjGzpjYoKndJYwOhUTlWts-BEY_ULHYIQQYgmn4uUUnMW461eSpiOwybZ277Qq4eLgy7ZxvoKuggqug298XarKNip8wrmLb_DDNdvuuP5GYabCwRq4VHWEqjJw3sYGPrnqNZ6Dk0KV0V78zDF4vltssvtk9bh8yG5XiWaYN4khxpJCM45FznKNOKE5sYxxQwRGhFirGM0FpimZCSM4KURhFc211hgzQ-kYXA2-dfDvrY2N3Pk2VN1LSZjoIqbTlHQsNLB08DEGW8g6uH0XSmIk--5kX5Tsi5JDd53kepA4X_95_kv_Au69b-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470049592</pqid></control><display><type>article</type><title>Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings</title><source>IOP Publishing Free Content</source><creator>Alarcón, Felipe ; Teague, R. ; Zhang, Ke ; Bergin, E. A. ; Barraza-Alfaro, M.</creator><creatorcontrib>Alarcón, Felipe ; Teague, R. ; Zhang, Ke ; Bergin, E. A. ; Barraza-Alfaro, M.</creatorcontrib><description>Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The compositions of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas-depleted gap, the line emission depends on several different parameters, such as the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods, such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abc1d6</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Abundance ; Astrochemistry ; Astronomical simulations ; Astrophysics ; Chemical evolution ; Continuum radiation ; Density ; Depletion ; Dust ; Emission ; Evolution ; Gas giant planets ; Kinematics ; Local flow ; Planet formation ; Planetary system formation ; Planets ; Protoplanetary disks ; Sublimation ; Substructures ; Terrestrial planets ; Tracers ; Volatile compounds</subject><ispartof>The Astrophysical journal, 2020-12, Vol.905 (1), p.68</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-d2de2fc4617b4bc0623b2e446d271022eea43b7139287d762f7fea3bccc114d33</citedby><cites>FETCH-LOGICAL-c416t-d2de2fc4617b4bc0623b2e446d271022eea43b7139287d762f7fea3bccc114d33</cites><orcidid>0000-0002-0661-7517 ; 0000-0003-1534-5186 ; 0000-0002-2692-7862 ; 0000-0003-4179-6394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc1d6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc1d6$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Alarcón, Felipe</creatorcontrib><creatorcontrib>Teague, R.</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bergin, E. A.</creatorcontrib><creatorcontrib>Barraza-Alfaro, M.</creatorcontrib><title>Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The compositions of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas-depleted gap, the line emission depends on several different parameters, such as the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods, such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.</description><subject>Abundance</subject><subject>Astrochemistry</subject><subject>Astronomical simulations</subject><subject>Astrophysics</subject><subject>Chemical evolution</subject><subject>Continuum radiation</subject><subject>Density</subject><subject>Depletion</subject><subject>Dust</subject><subject>Emission</subject><subject>Evolution</subject><subject>Gas giant planets</subject><subject>Kinematics</subject><subject>Local flow</subject><subject>Planet formation</subject><subject>Planetary system formation</subject><subject>Planets</subject><subject>Protoplanetary disks</subject><subject>Sublimation</subject><subject>Substructures</subject><subject>Terrestrial planets</subject><subject>Tracers</subject><subject>Volatile compounds</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UM9LwzAYDaLgnN49Brxal19L1qN0cwoDh0zwFtIkdZldU5N24n9va0VPnj6-9733Pt4D4BKjGzpjYoKndJYwOhUTlWts-BEY_ULHYIQQYgmn4uUUnMW461eSpiOwybZ277Qq4eLgy7ZxvoKuggqug298XarKNip8wrmLb_DDNdvuuP5GYabCwRq4VHWEqjJw3sYGPrnqNZ6Dk0KV0V78zDF4vltssvtk9bh8yG5XiWaYN4khxpJCM45FznKNOKE5sYxxQwRGhFirGM0FpimZCSM4KURhFc211hgzQ-kYXA2-dfDvrY2N3Pk2VN1LSZjoIqbTlHQsNLB08DEGW8g6uH0XSmIk--5kX5Tsi5JDd53kepA4X_95_kv_Au69b-8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Alarcón, Felipe</creator><creator>Teague, R.</creator><creator>Zhang, Ke</creator><creator>Bergin, E. A.</creator><creator>Barraza-Alfaro, M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0661-7517</orcidid><orcidid>https://orcid.org/0000-0003-1534-5186</orcidid><orcidid>https://orcid.org/0000-0002-2692-7862</orcidid><orcidid>https://orcid.org/0000-0003-4179-6394</orcidid></search><sort><creationdate>20201201</creationdate><title>Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings</title><author>Alarcón, Felipe ; Teague, R. ; Zhang, Ke ; Bergin, E. A. ; Barraza-Alfaro, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-d2de2fc4617b4bc0623b2e446d271022eea43b7139287d762f7fea3bccc114d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Astrochemistry</topic><topic>Astronomical simulations</topic><topic>Astrophysics</topic><topic>Chemical evolution</topic><topic>Continuum radiation</topic><topic>Density</topic><topic>Depletion</topic><topic>Dust</topic><topic>Emission</topic><topic>Evolution</topic><topic>Gas giant planets</topic><topic>Kinematics</topic><topic>Local flow</topic><topic>Planet formation</topic><topic>Planetary system formation</topic><topic>Planets</topic><topic>Protoplanetary disks</topic><topic>Sublimation</topic><topic>Substructures</topic><topic>Terrestrial planets</topic><topic>Tracers</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alarcón, Felipe</creatorcontrib><creatorcontrib>Teague, R.</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bergin, E. A.</creatorcontrib><creatorcontrib>Barraza-Alfaro, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alarcón, Felipe</au><au>Teague, R.</au><au>Zhang, Ke</au><au>Bergin, E. A.</au><au>Barraza-Alfaro, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>905</volume><issue>1</issue><spage>68</spage><pages>68-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The compositions of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas-depleted gap, the line emission depends on several different parameters, such as the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods, such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abc1d6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0661-7517</orcidid><orcidid>https://orcid.org/0000-0003-1534-5186</orcidid><orcidid>https://orcid.org/0000-0002-2692-7862</orcidid><orcidid>https://orcid.org/0000-0003-4179-6394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-12, Vol.905 (1), p.68
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_abc1d6
source IOP Publishing Free Content
subjects Abundance
Astrochemistry
Astronomical simulations
Astrophysics
Chemical evolution
Continuum radiation
Density
Depletion
Dust
Emission
Evolution
Gas giant planets
Kinematics
Local flow
Planet formation
Planetary system formation
Planets
Protoplanetary disks
Sublimation
Substructures
Terrestrial planets
Tracers
Volatile compounds
title Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Evolution%20in%20a%20Protoplanetary%20Disk%20within%20Planet%20Carved%20Gaps%20and%20Dust%20Rings&rft.jtitle=The%20Astrophysical%20journal&rft.au=Alarc%C3%B3n,%20Felipe&rft.date=2020-12-01&rft.volume=905&rft.issue=1&rft.spage=68&rft.pages=68-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abc1d6&rft_dat=%3Cproquest_O3W%3E2470049592%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470049592&rft_id=info:pmid/&rfr_iscdi=true