Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings
Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-12, Vol.905 (1), p.68 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | The Astrophysical journal |
container_volume | 905 |
creator | Alarcón, Felipe Teague, R. Zhang, Ke Bergin, E. A. Barraza-Alfaro, M. |
description | Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The compositions of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas-depleted gap, the line emission depends on several different parameters, such as the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods, such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution. |
doi_str_mv | 10.3847/1538-4357/abc1d6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_abc1d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470049592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-d2de2fc4617b4bc0623b2e446d271022eea43b7139287d762f7fea3bccc114d33</originalsourceid><addsrcrecordid>eNp1UM9LwzAYDaLgnN49Brxal19L1qN0cwoDh0zwFtIkdZldU5N24n9va0VPnj6-9733Pt4D4BKjGzpjYoKndJYwOhUTlWts-BEY_ULHYIQQYgmn4uUUnMW461eSpiOwybZ277Qq4eLgy7ZxvoKuggqug298XarKNip8wrmLb_DDNdvuuP5GYabCwRq4VHWEqjJw3sYGPrnqNZ6Dk0KV0V78zDF4vltssvtk9bh8yG5XiWaYN4khxpJCM45FznKNOKE5sYxxQwRGhFirGM0FpimZCSM4KURhFc211hgzQ-kYXA2-dfDvrY2N3Pk2VN1LSZjoIqbTlHQsNLB08DEGW8g6uH0XSmIk--5kX5Tsi5JDd53kepA4X_95_kv_Au69b-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470049592</pqid></control><display><type>article</type><title>Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings</title><source>IOP Publishing Free Content</source><creator>Alarcón, Felipe ; Teague, R. ; Zhang, Ke ; Bergin, E. A. ; Barraza-Alfaro, M.</creator><creatorcontrib>Alarcón, Felipe ; Teague, R. ; Zhang, Ke ; Bergin, E. A. ; Barraza-Alfaro, M.</creatorcontrib><description>Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The compositions of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas-depleted gap, the line emission depends on several different parameters, such as the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods, such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abc1d6</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Abundance ; Astrochemistry ; Astronomical simulations ; Astrophysics ; Chemical evolution ; Continuum radiation ; Density ; Depletion ; Dust ; Emission ; Evolution ; Gas giant planets ; Kinematics ; Local flow ; Planet formation ; Planetary system formation ; Planets ; Protoplanetary disks ; Sublimation ; Substructures ; Terrestrial planets ; Tracers ; Volatile compounds</subject><ispartof>The Astrophysical journal, 2020-12, Vol.905 (1), p.68</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-d2de2fc4617b4bc0623b2e446d271022eea43b7139287d762f7fea3bccc114d33</citedby><cites>FETCH-LOGICAL-c416t-d2de2fc4617b4bc0623b2e446d271022eea43b7139287d762f7fea3bccc114d33</cites><orcidid>0000-0002-0661-7517 ; 0000-0003-1534-5186 ; 0000-0002-2692-7862 ; 0000-0003-4179-6394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc1d6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc1d6$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Alarcón, Felipe</creatorcontrib><creatorcontrib>Teague, R.</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bergin, E. A.</creatorcontrib><creatorcontrib>Barraza-Alfaro, M.</creatorcontrib><title>Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The compositions of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas-depleted gap, the line emission depends on several different parameters, such as the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods, such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.</description><subject>Abundance</subject><subject>Astrochemistry</subject><subject>Astronomical simulations</subject><subject>Astrophysics</subject><subject>Chemical evolution</subject><subject>Continuum radiation</subject><subject>Density</subject><subject>Depletion</subject><subject>Dust</subject><subject>Emission</subject><subject>Evolution</subject><subject>Gas giant planets</subject><subject>Kinematics</subject><subject>Local flow</subject><subject>Planet formation</subject><subject>Planetary system formation</subject><subject>Planets</subject><subject>Protoplanetary disks</subject><subject>Sublimation</subject><subject>Substructures</subject><subject>Terrestrial planets</subject><subject>Tracers</subject><subject>Volatile compounds</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UM9LwzAYDaLgnN49Brxal19L1qN0cwoDh0zwFtIkdZldU5N24n9va0VPnj6-9733Pt4D4BKjGzpjYoKndJYwOhUTlWts-BEY_ULHYIQQYgmn4uUUnMW461eSpiOwybZ277Qq4eLgy7ZxvoKuggqug298XarKNip8wrmLb_DDNdvuuP5GYabCwRq4VHWEqjJw3sYGPrnqNZ6Dk0KV0V78zDF4vltssvtk9bh8yG5XiWaYN4khxpJCM45FznKNOKE5sYxxQwRGhFirGM0FpimZCSM4KURhFc211hgzQ-kYXA2-dfDvrY2N3Pk2VN1LSZjoIqbTlHQsNLB08DEGW8g6uH0XSmIk--5kX5Tsi5JDd53kepA4X_95_kv_Au69b-8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Alarcón, Felipe</creator><creator>Teague, R.</creator><creator>Zhang, Ke</creator><creator>Bergin, E. A.</creator><creator>Barraza-Alfaro, M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0661-7517</orcidid><orcidid>https://orcid.org/0000-0003-1534-5186</orcidid><orcidid>https://orcid.org/0000-0002-2692-7862</orcidid><orcidid>https://orcid.org/0000-0003-4179-6394</orcidid></search><sort><creationdate>20201201</creationdate><title>Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings</title><author>Alarcón, Felipe ; Teague, R. ; Zhang, Ke ; Bergin, E. A. ; Barraza-Alfaro, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-d2de2fc4617b4bc0623b2e446d271022eea43b7139287d762f7fea3bccc114d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Astrochemistry</topic><topic>Astronomical simulations</topic><topic>Astrophysics</topic><topic>Chemical evolution</topic><topic>Continuum radiation</topic><topic>Density</topic><topic>Depletion</topic><topic>Dust</topic><topic>Emission</topic><topic>Evolution</topic><topic>Gas giant planets</topic><topic>Kinematics</topic><topic>Local flow</topic><topic>Planet formation</topic><topic>Planetary system formation</topic><topic>Planets</topic><topic>Protoplanetary disks</topic><topic>Sublimation</topic><topic>Substructures</topic><topic>Terrestrial planets</topic><topic>Tracers</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alarcón, Felipe</creatorcontrib><creatorcontrib>Teague, R.</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bergin, E. A.</creatorcontrib><creatorcontrib>Barraza-Alfaro, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alarcón, Felipe</au><au>Teague, R.</au><au>Zhang, Ke</au><au>Bergin, E. A.</au><au>Barraza-Alfaro, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>905</volume><issue>1</issue><spage>68</spage><pages>68-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The compositions of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas-depleted gap, the line emission depends on several different parameters, such as the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods, such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abc1d6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0661-7517</orcidid><orcidid>https://orcid.org/0000-0003-1534-5186</orcidid><orcidid>https://orcid.org/0000-0002-2692-7862</orcidid><orcidid>https://orcid.org/0000-0003-4179-6394</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-12, Vol.905 (1), p.68 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_abc1d6 |
source | IOP Publishing Free Content |
subjects | Abundance Astrochemistry Astronomical simulations Astrophysics Chemical evolution Continuum radiation Density Depletion Dust Emission Evolution Gas giant planets Kinematics Local flow Planet formation Planetary system formation Planets Protoplanetary disks Sublimation Substructures Terrestrial planets Tracers Volatile compounds |
title | Chemical Evolution in a Protoplanetary Disk within Planet Carved Gaps and Dust Rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Evolution%20in%20a%20Protoplanetary%20Disk%20within%20Planet%20Carved%20Gaps%20and%20Dust%20Rings&rft.jtitle=The%20Astrophysical%20journal&rft.au=Alarc%C3%B3n,%20Felipe&rft.date=2020-12-01&rft.volume=905&rft.issue=1&rft.spage=68&rft.pages=68-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abc1d6&rft_dat=%3Cproquest_O3W%3E2470049592%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470049592&rft_id=info:pmid/&rfr_iscdi=true |