Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks

We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-11, Vol.903 (2), p.124
Hauptverfasser: Banzatti, Andrea, Pascucci, Ilaria, Bosman, Arthur D., Pinilla, Paola, Salyk, Colette, Herczeg, Gregory J., Pontoppidan, Klaus M., Vazquez, Ivan, Watkins, Andrew, Krijt, Sebastiaan, Hendler, Nathan, Long, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 124
container_title The Astrophysical journal
container_volume 903
creator Banzatti, Andrea
Pascucci, Ilaria
Bosman, Arthur D.
Pinilla, Paola
Salyk, Colette
Herczeg, Gregory J.
Pontoppidan, Klaus M.
Vazquez, Ivan
Watkins, Andrew
Krijt, Sebastiaan
Hendler, Nathan
Long, Feng
description We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius Rdust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and Rdust. If Rdust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n13-30, which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.
doi_str_mv 10.3847/1538-4357/abbc1a
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_abbc1a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458985420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-7738b5e8306b5bfef112f7d5bf35b060569987d71378275555fb81c0f495d5e23</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOKd3jwHxZl3SJE16lOncQNkQBW-haZMu-0hr0oH9722p6EXfy_vB8_xeeAC4xOiWCMonmBERUcL4JFMqx9kRGP2cjsEIIUSjhPD3U3AWwqZf4zQdge3cuiZAU3m4yFu40krtNHy2pc8aWzk407qwroSZg8vPttQu8jZfw-la721ofAutg81aw4Vz2sPVLnO6iTravje96LJnVAbe27AN5-DEZLugL777GLzNHl6n8-hp-biY3j1FOaVJE3FOhGJaEJQopow2GMeGF91ImEIJYkmaCl5wTLiIOevKKIFzZGjKCqZjMgZXA7f21cdBh0ZuqoN33UsZUyZSwWiMOhUaVLmvQvDayNrbfeZbiZHsI5V9frLPTw6RdpbrwWKr-peZ1RuZIiJjiWMq68J0ups_dP9ivwAgzoRS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458985420</pqid></control><display><type>article</type><title>Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks</title><source>IOP Publishing Free Content</source><creator>Banzatti, Andrea ; Pascucci, Ilaria ; Bosman, Arthur D. ; Pinilla, Paola ; Salyk, Colette ; Herczeg, Gregory J. ; Pontoppidan, Klaus M. ; Vazquez, Ivan ; Watkins, Andrew ; Krijt, Sebastiaan ; Hendler, Nathan ; Long, Feng</creator><creatorcontrib>Banzatti, Andrea ; Pascucci, Ilaria ; Bosman, Arthur D. ; Pinilla, Paola ; Salyk, Colette ; Herczeg, Gregory J. ; Pontoppidan, Klaus M. ; Vazquez, Ivan ; Watkins, Andrew ; Krijt, Sebastiaan ; Hendler, Nathan ; Long, Feng</creatorcontrib><description>We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius Rdust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and Rdust. If Rdust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n13-30, which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abbc1a</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Arrays ; Astrochemistry ; Astrophysics ; Carbon dioxide ; Chemistry ; Circumstellar disks ; Depletion ; Deposition ; Drift ; Dust ; Emission spectra ; Gas evolution ; Infrared astronomy ; Infrared spectra ; Luminosity ; Millimeter astronomy ; Molecular gas ; Molecular spectroscopy ; Oxygen ; Planet formation ; Planetary system formation ; Planets ; Pre-main sequence stars ; Protoplanetary disks ; Radial distribution ; Radio telescopes ; Sublimation</subject><ispartof>The Astrophysical journal, 2020-11, Vol.903 (2), p.124</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-7738b5e8306b5bfef112f7d5bf35b060569987d71378275555fb81c0f495d5e23</citedby><cites>FETCH-LOGICAL-c446t-7738b5e8306b5bfef112f7d5bf35b060569987d71378275555fb81c0f495d5e23</cites><orcidid>0000-0002-7154-6065 ; 0000-0003-4001-3589 ; 0000-0001-7962-1683 ; 0000-0003-4335-0900 ; 0000-0002-7607-719X ; 0000-0001-7552-1562 ; 0000-0003-3682-6632 ; 0000-0001-8764-1780 ; 0000-0002-3164-0428 ; 0000-0002-3291-6887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbc1a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbc1a$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Banzatti, Andrea</creatorcontrib><creatorcontrib>Pascucci, Ilaria</creatorcontrib><creatorcontrib>Bosman, Arthur D.</creatorcontrib><creatorcontrib>Pinilla, Paola</creatorcontrib><creatorcontrib>Salyk, Colette</creatorcontrib><creatorcontrib>Herczeg, Gregory J.</creatorcontrib><creatorcontrib>Pontoppidan, Klaus M.</creatorcontrib><creatorcontrib>Vazquez, Ivan</creatorcontrib><creatorcontrib>Watkins, Andrew</creatorcontrib><creatorcontrib>Krijt, Sebastiaan</creatorcontrib><creatorcontrib>Hendler, Nathan</creatorcontrib><creatorcontrib>Long, Feng</creatorcontrib><title>Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius Rdust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and Rdust. If Rdust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n13-30, which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.</description><subject>Accretion disks</subject><subject>Arrays</subject><subject>Astrochemistry</subject><subject>Astrophysics</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Circumstellar disks</subject><subject>Depletion</subject><subject>Deposition</subject><subject>Drift</subject><subject>Dust</subject><subject>Emission spectra</subject><subject>Gas evolution</subject><subject>Infrared astronomy</subject><subject>Infrared spectra</subject><subject>Luminosity</subject><subject>Millimeter astronomy</subject><subject>Molecular gas</subject><subject>Molecular spectroscopy</subject><subject>Oxygen</subject><subject>Planet formation</subject><subject>Planetary system formation</subject><subject>Planets</subject><subject>Pre-main sequence stars</subject><subject>Protoplanetary disks</subject><subject>Radial distribution</subject><subject>Radio telescopes</subject><subject>Sublimation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMoOKd3jwHxZl3SJE16lOncQNkQBW-haZMu-0hr0oH9722p6EXfy_vB8_xeeAC4xOiWCMonmBERUcL4JFMqx9kRGP2cjsEIIUSjhPD3U3AWwqZf4zQdge3cuiZAU3m4yFu40krtNHy2pc8aWzk407qwroSZg8vPttQu8jZfw-la721ofAutg81aw4Vz2sPVLnO6iTravje96LJnVAbe27AN5-DEZLugL777GLzNHl6n8-hp-biY3j1FOaVJE3FOhGJaEJQopow2GMeGF91ImEIJYkmaCl5wTLiIOevKKIFzZGjKCqZjMgZXA7f21cdBh0ZuqoN33UsZUyZSwWiMOhUaVLmvQvDayNrbfeZbiZHsI5V9frLPTw6RdpbrwWKr-peZ1RuZIiJjiWMq68J0ups_dP9ivwAgzoRS</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Banzatti, Andrea</creator><creator>Pascucci, Ilaria</creator><creator>Bosman, Arthur D.</creator><creator>Pinilla, Paola</creator><creator>Salyk, Colette</creator><creator>Herczeg, Gregory J.</creator><creator>Pontoppidan, Klaus M.</creator><creator>Vazquez, Ivan</creator><creator>Watkins, Andrew</creator><creator>Krijt, Sebastiaan</creator><creator>Hendler, Nathan</creator><creator>Long, Feng</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7154-6065</orcidid><orcidid>https://orcid.org/0000-0003-4001-3589</orcidid><orcidid>https://orcid.org/0000-0001-7962-1683</orcidid><orcidid>https://orcid.org/0000-0003-4335-0900</orcidid><orcidid>https://orcid.org/0000-0002-7607-719X</orcidid><orcidid>https://orcid.org/0000-0001-7552-1562</orcidid><orcidid>https://orcid.org/0000-0003-3682-6632</orcidid><orcidid>https://orcid.org/0000-0001-8764-1780</orcidid><orcidid>https://orcid.org/0000-0002-3164-0428</orcidid><orcidid>https://orcid.org/0000-0002-3291-6887</orcidid></search><sort><creationdate>20201101</creationdate><title>Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks</title><author>Banzatti, Andrea ; Pascucci, Ilaria ; Bosman, Arthur D. ; Pinilla, Paola ; Salyk, Colette ; Herczeg, Gregory J. ; Pontoppidan, Klaus M. ; Vazquez, Ivan ; Watkins, Andrew ; Krijt, Sebastiaan ; Hendler, Nathan ; Long, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-7738b5e8306b5bfef112f7d5bf35b060569987d71378275555fb81c0f495d5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accretion disks</topic><topic>Arrays</topic><topic>Astrochemistry</topic><topic>Astrophysics</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Circumstellar disks</topic><topic>Depletion</topic><topic>Deposition</topic><topic>Drift</topic><topic>Dust</topic><topic>Emission spectra</topic><topic>Gas evolution</topic><topic>Infrared astronomy</topic><topic>Infrared spectra</topic><topic>Luminosity</topic><topic>Millimeter astronomy</topic><topic>Molecular gas</topic><topic>Molecular spectroscopy</topic><topic>Oxygen</topic><topic>Planet formation</topic><topic>Planetary system formation</topic><topic>Planets</topic><topic>Pre-main sequence stars</topic><topic>Protoplanetary disks</topic><topic>Radial distribution</topic><topic>Radio telescopes</topic><topic>Sublimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banzatti, Andrea</creatorcontrib><creatorcontrib>Pascucci, Ilaria</creatorcontrib><creatorcontrib>Bosman, Arthur D.</creatorcontrib><creatorcontrib>Pinilla, Paola</creatorcontrib><creatorcontrib>Salyk, Colette</creatorcontrib><creatorcontrib>Herczeg, Gregory J.</creatorcontrib><creatorcontrib>Pontoppidan, Klaus M.</creatorcontrib><creatorcontrib>Vazquez, Ivan</creatorcontrib><creatorcontrib>Watkins, Andrew</creatorcontrib><creatorcontrib>Krijt, Sebastiaan</creatorcontrib><creatorcontrib>Hendler, Nathan</creatorcontrib><creatorcontrib>Long, Feng</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Banzatti, Andrea</au><au>Pascucci, Ilaria</au><au>Bosman, Arthur D.</au><au>Pinilla, Paola</au><au>Salyk, Colette</au><au>Herczeg, Gregory J.</au><au>Pontoppidan, Klaus M.</au><au>Vazquez, Ivan</au><au>Watkins, Andrew</au><au>Krijt, Sebastiaan</au><au>Hendler, Nathan</au><au>Long, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>903</volume><issue>2</issue><spage>124</spage><pages>124-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius Rdust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and Rdust. If Rdust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n13-30, which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abbc1a</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7154-6065</orcidid><orcidid>https://orcid.org/0000-0003-4001-3589</orcidid><orcidid>https://orcid.org/0000-0001-7962-1683</orcidid><orcidid>https://orcid.org/0000-0003-4335-0900</orcidid><orcidid>https://orcid.org/0000-0002-7607-719X</orcidid><orcidid>https://orcid.org/0000-0001-7552-1562</orcidid><orcidid>https://orcid.org/0000-0003-3682-6632</orcidid><orcidid>https://orcid.org/0000-0001-8764-1780</orcidid><orcidid>https://orcid.org/0000-0002-3164-0428</orcidid><orcidid>https://orcid.org/0000-0002-3291-6887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-11, Vol.903 (2), p.124
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_abbc1a
source IOP Publishing Free Content
subjects Accretion disks
Arrays
Astrochemistry
Astrophysics
Carbon dioxide
Chemistry
Circumstellar disks
Depletion
Deposition
Drift
Dust
Emission spectra
Gas evolution
Infrared astronomy
Infrared spectra
Luminosity
Millimeter astronomy
Molecular gas
Molecular spectroscopy
Oxygen
Planet formation
Planetary system formation
Planets
Pre-main sequence stars
Protoplanetary disks
Radial distribution
Radio telescopes
Sublimation
title Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hints%20for%20Icy%20Pebble%20Migration%20Feeding%20an%20Oxygen-rich%20Chemistry%20in%20the%20Inner%20Planet-forming%20Region%20of%20Disks&rft.jtitle=The%20Astrophysical%20journal&rft.au=Banzatti,%20Andrea&rft.date=2020-11-01&rft.volume=903&rft.issue=2&rft.spage=124&rft.pages=124-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abbc1a&rft_dat=%3Cproquest_O3W%3E2458985420%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458985420&rft_id=info:pmid/&rfr_iscdi=true