Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks
We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution o...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-11, Vol.903 (2), p.124 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 124 |
container_title | The Astrophysical journal |
container_volume | 903 |
creator | Banzatti, Andrea Pascucci, Ilaria Bosman, Arthur D. Pinilla, Paola Salyk, Colette Herczeg, Gregory J. Pontoppidan, Klaus M. Vazquez, Ivan Watkins, Andrew Krijt, Sebastiaan Hendler, Nathan Long, Feng |
description | We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius Rdust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and Rdust. If Rdust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n13-30, which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material. |
doi_str_mv | 10.3847/1538-4357/abbc1a |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_abbc1a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458985420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-7738b5e8306b5bfef112f7d5bf35b060569987d71378275555fb81c0f495d5e23</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOKd3jwHxZl3SJE16lOncQNkQBW-haZMu-0hr0oH9722p6EXfy_vB8_xeeAC4xOiWCMonmBERUcL4JFMqx9kRGP2cjsEIIUSjhPD3U3AWwqZf4zQdge3cuiZAU3m4yFu40krtNHy2pc8aWzk407qwroSZg8vPttQu8jZfw-la721ofAutg81aw4Vz2sPVLnO6iTravje96LJnVAbe27AN5-DEZLugL777GLzNHl6n8-hp-biY3j1FOaVJE3FOhGJaEJQopow2GMeGF91ImEIJYkmaCl5wTLiIOevKKIFzZGjKCqZjMgZXA7f21cdBh0ZuqoN33UsZUyZSwWiMOhUaVLmvQvDayNrbfeZbiZHsI5V9frLPTw6RdpbrwWKr-peZ1RuZIiJjiWMq68J0ups_dP9ivwAgzoRS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458985420</pqid></control><display><type>article</type><title>Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks</title><source>IOP Publishing Free Content</source><creator>Banzatti, Andrea ; Pascucci, Ilaria ; Bosman, Arthur D. ; Pinilla, Paola ; Salyk, Colette ; Herczeg, Gregory J. ; Pontoppidan, Klaus M. ; Vazquez, Ivan ; Watkins, Andrew ; Krijt, Sebastiaan ; Hendler, Nathan ; Long, Feng</creator><creatorcontrib>Banzatti, Andrea ; Pascucci, Ilaria ; Bosman, Arthur D. ; Pinilla, Paola ; Salyk, Colette ; Herczeg, Gregory J. ; Pontoppidan, Klaus M. ; Vazquez, Ivan ; Watkins, Andrew ; Krijt, Sebastiaan ; Hendler, Nathan ; Long, Feng</creatorcontrib><description>We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius Rdust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and Rdust. If Rdust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n13-30, which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abbc1a</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Arrays ; Astrochemistry ; Astrophysics ; Carbon dioxide ; Chemistry ; Circumstellar disks ; Depletion ; Deposition ; Drift ; Dust ; Emission spectra ; Gas evolution ; Infrared astronomy ; Infrared spectra ; Luminosity ; Millimeter astronomy ; Molecular gas ; Molecular spectroscopy ; Oxygen ; Planet formation ; Planetary system formation ; Planets ; Pre-main sequence stars ; Protoplanetary disks ; Radial distribution ; Radio telescopes ; Sublimation</subject><ispartof>The Astrophysical journal, 2020-11, Vol.903 (2), p.124</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-7738b5e8306b5bfef112f7d5bf35b060569987d71378275555fb81c0f495d5e23</citedby><cites>FETCH-LOGICAL-c446t-7738b5e8306b5bfef112f7d5bf35b060569987d71378275555fb81c0f495d5e23</cites><orcidid>0000-0002-7154-6065 ; 0000-0003-4001-3589 ; 0000-0001-7962-1683 ; 0000-0003-4335-0900 ; 0000-0002-7607-719X ; 0000-0001-7552-1562 ; 0000-0003-3682-6632 ; 0000-0001-8764-1780 ; 0000-0002-3164-0428 ; 0000-0002-3291-6887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbc1a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbc1a$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Banzatti, Andrea</creatorcontrib><creatorcontrib>Pascucci, Ilaria</creatorcontrib><creatorcontrib>Bosman, Arthur D.</creatorcontrib><creatorcontrib>Pinilla, Paola</creatorcontrib><creatorcontrib>Salyk, Colette</creatorcontrib><creatorcontrib>Herczeg, Gregory J.</creatorcontrib><creatorcontrib>Pontoppidan, Klaus M.</creatorcontrib><creatorcontrib>Vazquez, Ivan</creatorcontrib><creatorcontrib>Watkins, Andrew</creatorcontrib><creatorcontrib>Krijt, Sebastiaan</creatorcontrib><creatorcontrib>Hendler, Nathan</creatorcontrib><creatorcontrib>Long, Feng</creatorcontrib><title>Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius Rdust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and Rdust. If Rdust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n13-30, which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.</description><subject>Accretion disks</subject><subject>Arrays</subject><subject>Astrochemistry</subject><subject>Astrophysics</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Circumstellar disks</subject><subject>Depletion</subject><subject>Deposition</subject><subject>Drift</subject><subject>Dust</subject><subject>Emission spectra</subject><subject>Gas evolution</subject><subject>Infrared astronomy</subject><subject>Infrared spectra</subject><subject>Luminosity</subject><subject>Millimeter astronomy</subject><subject>Molecular gas</subject><subject>Molecular spectroscopy</subject><subject>Oxygen</subject><subject>Planet formation</subject><subject>Planetary system formation</subject><subject>Planets</subject><subject>Pre-main sequence stars</subject><subject>Protoplanetary disks</subject><subject>Radial distribution</subject><subject>Radio telescopes</subject><subject>Sublimation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMoOKd3jwHxZl3SJE16lOncQNkQBW-haZMu-0hr0oH9722p6EXfy_vB8_xeeAC4xOiWCMonmBERUcL4JFMqx9kRGP2cjsEIIUSjhPD3U3AWwqZf4zQdge3cuiZAU3m4yFu40krtNHy2pc8aWzk407qwroSZg8vPttQu8jZfw-la721ofAutg81aw4Vz2sPVLnO6iTravje96LJnVAbe27AN5-DEZLugL777GLzNHl6n8-hp-biY3j1FOaVJE3FOhGJaEJQopow2GMeGF91ImEIJYkmaCl5wTLiIOevKKIFzZGjKCqZjMgZXA7f21cdBh0ZuqoN33UsZUyZSwWiMOhUaVLmvQvDayNrbfeZbiZHsI5V9frLPTw6RdpbrwWKr-peZ1RuZIiJjiWMq68J0ups_dP9ivwAgzoRS</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Banzatti, Andrea</creator><creator>Pascucci, Ilaria</creator><creator>Bosman, Arthur D.</creator><creator>Pinilla, Paola</creator><creator>Salyk, Colette</creator><creator>Herczeg, Gregory J.</creator><creator>Pontoppidan, Klaus M.</creator><creator>Vazquez, Ivan</creator><creator>Watkins, Andrew</creator><creator>Krijt, Sebastiaan</creator><creator>Hendler, Nathan</creator><creator>Long, Feng</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7154-6065</orcidid><orcidid>https://orcid.org/0000-0003-4001-3589</orcidid><orcidid>https://orcid.org/0000-0001-7962-1683</orcidid><orcidid>https://orcid.org/0000-0003-4335-0900</orcidid><orcidid>https://orcid.org/0000-0002-7607-719X</orcidid><orcidid>https://orcid.org/0000-0001-7552-1562</orcidid><orcidid>https://orcid.org/0000-0003-3682-6632</orcidid><orcidid>https://orcid.org/0000-0001-8764-1780</orcidid><orcidid>https://orcid.org/0000-0002-3164-0428</orcidid><orcidid>https://orcid.org/0000-0002-3291-6887</orcidid></search><sort><creationdate>20201101</creationdate><title>Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks</title><author>Banzatti, Andrea ; Pascucci, Ilaria ; Bosman, Arthur D. ; Pinilla, Paola ; Salyk, Colette ; Herczeg, Gregory J. ; Pontoppidan, Klaus M. ; Vazquez, Ivan ; Watkins, Andrew ; Krijt, Sebastiaan ; Hendler, Nathan ; Long, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-7738b5e8306b5bfef112f7d5bf35b060569987d71378275555fb81c0f495d5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accretion disks</topic><topic>Arrays</topic><topic>Astrochemistry</topic><topic>Astrophysics</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Circumstellar disks</topic><topic>Depletion</topic><topic>Deposition</topic><topic>Drift</topic><topic>Dust</topic><topic>Emission spectra</topic><topic>Gas evolution</topic><topic>Infrared astronomy</topic><topic>Infrared spectra</topic><topic>Luminosity</topic><topic>Millimeter astronomy</topic><topic>Molecular gas</topic><topic>Molecular spectroscopy</topic><topic>Oxygen</topic><topic>Planet formation</topic><topic>Planetary system formation</topic><topic>Planets</topic><topic>Pre-main sequence stars</topic><topic>Protoplanetary disks</topic><topic>Radial distribution</topic><topic>Radio telescopes</topic><topic>Sublimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banzatti, Andrea</creatorcontrib><creatorcontrib>Pascucci, Ilaria</creatorcontrib><creatorcontrib>Bosman, Arthur D.</creatorcontrib><creatorcontrib>Pinilla, Paola</creatorcontrib><creatorcontrib>Salyk, Colette</creatorcontrib><creatorcontrib>Herczeg, Gregory J.</creatorcontrib><creatorcontrib>Pontoppidan, Klaus M.</creatorcontrib><creatorcontrib>Vazquez, Ivan</creatorcontrib><creatorcontrib>Watkins, Andrew</creatorcontrib><creatorcontrib>Krijt, Sebastiaan</creatorcontrib><creatorcontrib>Hendler, Nathan</creatorcontrib><creatorcontrib>Long, Feng</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Banzatti, Andrea</au><au>Pascucci, Ilaria</au><au>Bosman, Arthur D.</au><au>Pinilla, Paola</au><au>Salyk, Colette</au><au>Herczeg, Gregory J.</au><au>Pontoppidan, Klaus M.</au><au>Vazquez, Ivan</au><au>Watkins, Andrew</au><au>Krijt, Sebastiaan</au><au>Hendler, Nathan</au><au>Long, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>903</volume><issue>2</issue><spage>124</spage><pages>124-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a synergic study of protoplanetary disks to investigate links between inner-disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: (1) spatially resolved disk images revealing the radial distribution of disk pebbles (millimeter to centimeter dust grains), from millimeter observations with the Atacama Large Millimeter/Submillimeter Array or the Submillimeter Array, and (2) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anticorrelate with the dust disk radius Rdust, expanding previous results found by Najita et al. for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anticorrelation with disk radius, suggesting that the strongest underlying relation is between H2O and Rdust. If Rdust is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner-disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anticorrelations are also detected between all molecular luminosities and the infrared index n13-30, which is sensitive to the presence and size of an inner-disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution, both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abbc1a</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7154-6065</orcidid><orcidid>https://orcid.org/0000-0003-4001-3589</orcidid><orcidid>https://orcid.org/0000-0001-7962-1683</orcidid><orcidid>https://orcid.org/0000-0003-4335-0900</orcidid><orcidid>https://orcid.org/0000-0002-7607-719X</orcidid><orcidid>https://orcid.org/0000-0001-7552-1562</orcidid><orcidid>https://orcid.org/0000-0003-3682-6632</orcidid><orcidid>https://orcid.org/0000-0001-8764-1780</orcidid><orcidid>https://orcid.org/0000-0002-3164-0428</orcidid><orcidid>https://orcid.org/0000-0002-3291-6887</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-11, Vol.903 (2), p.124 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_abbc1a |
source | IOP Publishing Free Content |
subjects | Accretion disks Arrays Astrochemistry Astrophysics Carbon dioxide Chemistry Circumstellar disks Depletion Deposition Drift Dust Emission spectra Gas evolution Infrared astronomy Infrared spectra Luminosity Millimeter astronomy Molecular gas Molecular spectroscopy Oxygen Planet formation Planetary system formation Planets Pre-main sequence stars Protoplanetary disks Radial distribution Radio telescopes Sublimation |
title | Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hints%20for%20Icy%20Pebble%20Migration%20Feeding%20an%20Oxygen-rich%20Chemistry%20in%20the%20Inner%20Planet-forming%20Region%20of%20Disks&rft.jtitle=The%20Astrophysical%20journal&rft.au=Banzatti,%20Andrea&rft.date=2020-11-01&rft.volume=903&rft.issue=2&rft.spage=124&rft.pages=124-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abbc1a&rft_dat=%3Cproquest_O3W%3E2458985420%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458985420&rft_id=info:pmid/&rfr_iscdi=true |