Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations

In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-11, Vol.904 (1), p.11
Hauptverfasser: Ferrero, Stefano, Zamirri, Lorenzo, Ceccarelli, Cecilia, Witzel, Arezu, Rimola, Albert, Ugliengo, Piero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 11
container_title The Astrophysical journal
container_volume 904
creator Ferrero, Stefano
Zamirri, Lorenzo
Ceccarelli, Cecilia
Witzel, Arezu
Rimola, Albert
Ugliengo, Piero
description In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BEs. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.
doi_str_mv 10.3847/1538-4357/abb953
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_abb953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461028334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-d018b6dcb4b4b295a7727c0c1e991bb7608a8b141c28bf14237b4042bc32416c3</originalsourceid><addsrcrecordid>eNp9kUtPxCAURonRxPGxd0miK2MVCi3tcpz4mGSMG43uCFCqTBAqtCbz76XW6MYYFrzOdwL3AnCE0TmpKLvABakySgp2IaSsC7IFZj9H22CGEKJZSdjzLtiLcT1u87qegeHSuMa4F3jldHgxOkLfwqXrdYi9tlYEeOetVoMdbxxchE3shbXGaShcA-dvPnSvfogJa7T9Sj-JlIZLpaHcwLlMNtMbDxfCJo1ISxcPwE4rbNSH3_M-eLy-eljcZqv7m-VivsoUrVCfNQhXsmyUpGnkdSEYy5lCCuu6xlKyElWikphilVeyxTQnTNL0MalITnGpyD44nbyvwvIumDcRNtwLw2_nK25cHDgiDBW4rD9wgo8nuAv-fdCx52s_BJfex3NaYpRXhNBEoYlSwccYdPvjxYiPneBj2flYdj51IkXOpojx3a_zH_zkD1x0a14jyjHHmHdNSz4BcQuVyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461028334</pqid></control><display><type>article</type><title>Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations</title><source>IOP Publishing Free Content</source><creator>Ferrero, Stefano ; Zamirri, Lorenzo ; Ceccarelli, Cecilia ; Witzel, Arezu ; Rimola, Albert ; Ugliengo, Piero</creator><creatorcontrib>Ferrero, Stefano ; Zamirri, Lorenzo ; Ceccarelli, Cecilia ; Witzel, Arezu ; Rimola, Albert ; Ugliengo, Piero</creatorcontrib><description>In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BEs. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abb953</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Binding energy ; Computational methods ; Crystal structure ; Crystallinity ; Dense interstellar clouds ; Density functional theory ; Hydrogen ; Hydrogen bonds ; Ice ; Ice structure ; Interstellar chemistry ; Interstellar dust ; Interstellar dust processes ; Interstellar matter ; Interstellar medium ; Interstellar molecules ; Near infrared observations ; Sciences of the Universe ; Solid matter physics ; Solid phases ; Surface ices ; Water ice</subject><ispartof>The Astrophysical journal, 2020-11, Vol.904 (1), p.11</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-d018b6dcb4b4b295a7727c0c1e991bb7608a8b141c28bf14237b4042bc32416c3</citedby><cites>FETCH-LOGICAL-c480t-d018b6dcb4b4b295a7727c0c1e991bb7608a8b141c28bf14237b4042bc32416c3</cites><orcidid>0000-0001-7819-7657 ; 0000-0001-9664-6292 ; 0000-0003-0518-944X ; 0000-0003-0219-6150 ; 0000-0001-8886-9832 ; 0000-0002-9637-4554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb953/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb953$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-03705169$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrero, Stefano</creatorcontrib><creatorcontrib>Zamirri, Lorenzo</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Witzel, Arezu</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><title>Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BEs. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.</description><subject>Astrophysics</subject><subject>Binding energy</subject><subject>Computational methods</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dense interstellar clouds</subject><subject>Density functional theory</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Ice</subject><subject>Ice structure</subject><subject>Interstellar chemistry</subject><subject>Interstellar dust</subject><subject>Interstellar dust processes</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Interstellar molecules</subject><subject>Near infrared observations</subject><subject>Sciences of the Universe</subject><subject>Solid matter physics</subject><subject>Solid phases</subject><subject>Surface ices</subject><subject>Water ice</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUtPxCAURonRxPGxd0miK2MVCi3tcpz4mGSMG43uCFCqTBAqtCbz76XW6MYYFrzOdwL3AnCE0TmpKLvABakySgp2IaSsC7IFZj9H22CGEKJZSdjzLtiLcT1u87qegeHSuMa4F3jldHgxOkLfwqXrdYi9tlYEeOetVoMdbxxchE3shbXGaShcA-dvPnSvfogJa7T9Sj-JlIZLpaHcwLlMNtMbDxfCJo1ISxcPwE4rbNSH3_M-eLy-eljcZqv7m-VivsoUrVCfNQhXsmyUpGnkdSEYy5lCCuu6xlKyElWikphilVeyxTQnTNL0MalITnGpyD44nbyvwvIumDcRNtwLw2_nK25cHDgiDBW4rD9wgo8nuAv-fdCx52s_BJfex3NaYpRXhNBEoYlSwccYdPvjxYiPneBj2flYdj51IkXOpojx3a_zH_zkD1x0a14jyjHHmHdNSz4BcQuVyw</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ferrero, Stefano</creator><creator>Zamirri, Lorenzo</creator><creator>Ceccarelli, Cecilia</creator><creator>Witzel, Arezu</creator><creator>Rimola, Albert</creator><creator>Ugliengo, Piero</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7819-7657</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid><orcidid>https://orcid.org/0000-0003-0518-944X</orcidid><orcidid>https://orcid.org/0000-0003-0219-6150</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid></search><sort><creationdate>20201101</creationdate><title>Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations</title><author>Ferrero, Stefano ; Zamirri, Lorenzo ; Ceccarelli, Cecilia ; Witzel, Arezu ; Rimola, Albert ; Ugliengo, Piero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-d018b6dcb4b4b295a7727c0c1e991bb7608a8b141c28bf14237b4042bc32416c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Binding energy</topic><topic>Computational methods</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dense interstellar clouds</topic><topic>Density functional theory</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Ice</topic><topic>Ice structure</topic><topic>Interstellar chemistry</topic><topic>Interstellar dust</topic><topic>Interstellar dust processes</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Interstellar molecules</topic><topic>Near infrared observations</topic><topic>Sciences of the Universe</topic><topic>Solid matter physics</topic><topic>Solid phases</topic><topic>Surface ices</topic><topic>Water ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrero, Stefano</creatorcontrib><creatorcontrib>Zamirri, Lorenzo</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Witzel, Arezu</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferrero, Stefano</au><au>Zamirri, Lorenzo</au><au>Ceccarelli, Cecilia</au><au>Witzel, Arezu</au><au>Rimola, Albert</au><au>Ugliengo, Piero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>904</volume><issue>1</issue><spage>11</spage><pages>11-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BEs. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abb953</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7819-7657</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid><orcidid>https://orcid.org/0000-0003-0518-944X</orcidid><orcidid>https://orcid.org/0000-0003-0219-6150</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-11, Vol.904 (1), p.11
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_abb953
source IOP Publishing Free Content
subjects Astrophysics
Binding energy
Computational methods
Crystal structure
Crystallinity
Dense interstellar clouds
Density functional theory
Hydrogen
Hydrogen bonds
Ice
Ice structure
Interstellar chemistry
Interstellar dust
Interstellar dust processes
Interstellar matter
Interstellar medium
Interstellar molecules
Near infrared observations
Sciences of the Universe
Solid matter physics
Solid phases
Surface ices
Water ice
title Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20Energies%20of%20Interstellar%20Molecules%20on%20Crystalline%20and%20Amorphous%20Models%20of%20Water%20Ice%20by%20Ab%20Initio%20Calculations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ferrero,%20Stefano&rft.date=2020-11-01&rft.volume=904&rft.issue=1&rft.spage=11&rft.pages=11-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abb953&rft_dat=%3Cproquest_O3W%3E2461028334%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461028334&rft_id=info:pmid/&rfr_iscdi=true