Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations
In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-11, Vol.904 (1), p.11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | The Astrophysical journal |
container_volume | 904 |
creator | Ferrero, Stefano Zamirri, Lorenzo Ceccarelli, Cecilia Witzel, Arezu Rimola, Albert Ugliengo, Piero |
description | In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BEs. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models. |
doi_str_mv | 10.3847/1538-4357/abb953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_abb953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461028334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-d018b6dcb4b4b295a7727c0c1e991bb7608a8b141c28bf14237b4042bc32416c3</originalsourceid><addsrcrecordid>eNp9kUtPxCAURonRxPGxd0miK2MVCi3tcpz4mGSMG43uCFCqTBAqtCbz76XW6MYYFrzOdwL3AnCE0TmpKLvABakySgp2IaSsC7IFZj9H22CGEKJZSdjzLtiLcT1u87qegeHSuMa4F3jldHgxOkLfwqXrdYi9tlYEeOetVoMdbxxchE3shbXGaShcA-dvPnSvfogJa7T9Sj-JlIZLpaHcwLlMNtMbDxfCJo1ISxcPwE4rbNSH3_M-eLy-eljcZqv7m-VivsoUrVCfNQhXsmyUpGnkdSEYy5lCCuu6xlKyElWikphilVeyxTQnTNL0MalITnGpyD44nbyvwvIumDcRNtwLw2_nK25cHDgiDBW4rD9wgo8nuAv-fdCx52s_BJfex3NaYpRXhNBEoYlSwccYdPvjxYiPneBj2flYdj51IkXOpojx3a_zH_zkD1x0a14jyjHHmHdNSz4BcQuVyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461028334</pqid></control><display><type>article</type><title>Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations</title><source>IOP Publishing Free Content</source><creator>Ferrero, Stefano ; Zamirri, Lorenzo ; Ceccarelli, Cecilia ; Witzel, Arezu ; Rimola, Albert ; Ugliengo, Piero</creator><creatorcontrib>Ferrero, Stefano ; Zamirri, Lorenzo ; Ceccarelli, Cecilia ; Witzel, Arezu ; Rimola, Albert ; Ugliengo, Piero</creatorcontrib><description>In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BEs. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abb953</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Binding energy ; Computational methods ; Crystal structure ; Crystallinity ; Dense interstellar clouds ; Density functional theory ; Hydrogen ; Hydrogen bonds ; Ice ; Ice structure ; Interstellar chemistry ; Interstellar dust ; Interstellar dust processes ; Interstellar matter ; Interstellar medium ; Interstellar molecules ; Near infrared observations ; Sciences of the Universe ; Solid matter physics ; Solid phases ; Surface ices ; Water ice</subject><ispartof>The Astrophysical journal, 2020-11, Vol.904 (1), p.11</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-d018b6dcb4b4b295a7727c0c1e991bb7608a8b141c28bf14237b4042bc32416c3</citedby><cites>FETCH-LOGICAL-c480t-d018b6dcb4b4b295a7727c0c1e991bb7608a8b141c28bf14237b4042bc32416c3</cites><orcidid>0000-0001-7819-7657 ; 0000-0001-9664-6292 ; 0000-0003-0518-944X ; 0000-0003-0219-6150 ; 0000-0001-8886-9832 ; 0000-0002-9637-4554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb953/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb953$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-03705169$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrero, Stefano</creatorcontrib><creatorcontrib>Zamirri, Lorenzo</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Witzel, Arezu</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><title>Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BEs. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.</description><subject>Astrophysics</subject><subject>Binding energy</subject><subject>Computational methods</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dense interstellar clouds</subject><subject>Density functional theory</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Ice</subject><subject>Ice structure</subject><subject>Interstellar chemistry</subject><subject>Interstellar dust</subject><subject>Interstellar dust processes</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Interstellar molecules</subject><subject>Near infrared observations</subject><subject>Sciences of the Universe</subject><subject>Solid matter physics</subject><subject>Solid phases</subject><subject>Surface ices</subject><subject>Water ice</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUtPxCAURonRxPGxd0miK2MVCi3tcpz4mGSMG43uCFCqTBAqtCbz76XW6MYYFrzOdwL3AnCE0TmpKLvABakySgp2IaSsC7IFZj9H22CGEKJZSdjzLtiLcT1u87qegeHSuMa4F3jldHgxOkLfwqXrdYi9tlYEeOetVoMdbxxchE3shbXGaShcA-dvPnSvfogJa7T9Sj-JlIZLpaHcwLlMNtMbDxfCJo1ISxcPwE4rbNSH3_M-eLy-eljcZqv7m-VivsoUrVCfNQhXsmyUpGnkdSEYy5lCCuu6xlKyElWikphilVeyxTQnTNL0MalITnGpyD44nbyvwvIumDcRNtwLw2_nK25cHDgiDBW4rD9wgo8nuAv-fdCx52s_BJfex3NaYpRXhNBEoYlSwccYdPvjxYiPneBj2flYdj51IkXOpojx3a_zH_zkD1x0a14jyjHHmHdNSz4BcQuVyw</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ferrero, Stefano</creator><creator>Zamirri, Lorenzo</creator><creator>Ceccarelli, Cecilia</creator><creator>Witzel, Arezu</creator><creator>Rimola, Albert</creator><creator>Ugliengo, Piero</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7819-7657</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid><orcidid>https://orcid.org/0000-0003-0518-944X</orcidid><orcidid>https://orcid.org/0000-0003-0219-6150</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid></search><sort><creationdate>20201101</creationdate><title>Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations</title><author>Ferrero, Stefano ; Zamirri, Lorenzo ; Ceccarelli, Cecilia ; Witzel, Arezu ; Rimola, Albert ; Ugliengo, Piero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-d018b6dcb4b4b295a7727c0c1e991bb7608a8b141c28bf14237b4042bc32416c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Binding energy</topic><topic>Computational methods</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dense interstellar clouds</topic><topic>Density functional theory</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Ice</topic><topic>Ice structure</topic><topic>Interstellar chemistry</topic><topic>Interstellar dust</topic><topic>Interstellar dust processes</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Interstellar molecules</topic><topic>Near infrared observations</topic><topic>Sciences of the Universe</topic><topic>Solid matter physics</topic><topic>Solid phases</topic><topic>Surface ices</topic><topic>Water ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrero, Stefano</creatorcontrib><creatorcontrib>Zamirri, Lorenzo</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Witzel, Arezu</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferrero, Stefano</au><au>Zamirri, Lorenzo</au><au>Ceccarelli, Cecilia</au><au>Witzel, Arezu</au><au>Rimola, Albert</au><au>Ugliengo, Piero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>904</volume><issue>1</issue><spage>11</spage><pages>11-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In the denser and colder (≤20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of submicron-sized dust grains covered by several layers of H2O-dominated ices and "dirtied" by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BEs. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abb953</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7819-7657</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid><orcidid>https://orcid.org/0000-0003-0518-944X</orcidid><orcidid>https://orcid.org/0000-0003-0219-6150</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-11, Vol.904 (1), p.11 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_abb953 |
source | IOP Publishing Free Content |
subjects | Astrophysics Binding energy Computational methods Crystal structure Crystallinity Dense interstellar clouds Density functional theory Hydrogen Hydrogen bonds Ice Ice structure Interstellar chemistry Interstellar dust Interstellar dust processes Interstellar matter Interstellar medium Interstellar molecules Near infrared observations Sciences of the Universe Solid matter physics Solid phases Surface ices Water ice |
title | Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20Energies%20of%20Interstellar%20Molecules%20on%20Crystalline%20and%20Amorphous%20Models%20of%20Water%20Ice%20by%20Ab%20Initio%20Calculations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ferrero,%20Stefano&rft.date=2020-11-01&rft.volume=904&rft.issue=1&rft.spage=11&rft.pages=11-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abb953&rft_dat=%3Cproquest_O3W%3E2461028334%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461028334&rft_id=info:pmid/&rfr_iscdi=true |