TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description
In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more informati...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-08, Vol.898 (2), p.155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 155 |
container_title | The Astrophysical journal |
container_volume | 898 |
creator | Changeat, Q. Al-Refaie, A. |
description | In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more information, are still limited to a few planets. In the next decade, new facilities such as NASA-James Webb Space Telescope and ESA-Ariel will revolutionize the field of exoplanet atmospheres and we expect that a significant time will be spent on spectral phase-curve observations. Most current models are still limited in their analysis of phase-curve data as they do not consider the planet atmosphere as a whole or they require large computational resources. In this paper we present a semi-analytical model that will allow computing exoplanet emission spectra at different phase angles. Our model provides a way to simulate a large number of observations while being only about four times slower than the traditional forward model for plane-parallel primary eclipse. This model, which is based on the newly developed TauREx 3 framework, will be further developed to allow for phase-curve atmospheric retrievals. |
doi_str_mv | 10.3847/1538-4357/ab9b82 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab9b82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430155149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-c822db318570147c97f8a597e4d5a59124edb505f7bf7e956b7d749343fc2fe83</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoWKt3jwWvdsvPJREvo5s_YKLIBG-hSRPsmEtN2qH_vS0VPXl6vPf98eADwDmCEyIonyJGRE4J49NSSy3wAUh-T4cggRDSfEb46zE4iXEzrFjKBFyvy-55-Umyp7cy2qILe3uVzTM0YYvswVd2mzkfRjE3g5otbDShbtra707BkSu30Z79zBS83CzXxV2-ery9L-ar3BAG29wIjCtNkGAcIsqN5E6UTHJLK9ZPhKmtNIPMce24lWymecWpJJQ4g50VJAUXY28T_EdnY6s2vgu7_qXClEDEGOrtKYCjywQfY7BONaF-L8OXQlANjNQARA1A1Mioj1yOkdo3f53_2r8B1vNk5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430155149</pqid></control><display><type>article</type><title>TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description</title><source>Institute of Physics Open Access Journal Titles</source><creator>Changeat, Q. ; Al-Refaie, A.</creator><creatorcontrib>Changeat, Q. ; Al-Refaie, A.</creatorcontrib><description>In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more information, are still limited to a few planets. In the next decade, new facilities such as NASA-James Webb Space Telescope and ESA-Ariel will revolutionize the field of exoplanet atmospheres and we expect that a significant time will be spent on spectral phase-curve observations. Most current models are still limited in their analysis of phase-curve data as they do not consider the planet atmosphere as a whole or they require large computational resources. In this paper we present a semi-analytical model that will allow computing exoplanet emission spectra at different phase angles. Our model provides a way to simulate a large number of observations while being only about four times slower than the traditional forward model for plane-parallel primary eclipse. This model, which is based on the newly developed TauREx 3 framework, will be further developed to allow for phase-curve atmospheric retrievals.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab9b82</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Atmosphere ; Atmospheric composition ; Atmospheric models ; Computer simulation ; Emission analysis ; Emission spectra ; Exoplanet atmospheres ; Extrasolar planets ; James Webb Space Telescope ; Mathematical models ; Planetary atmospheres ; Space telescopes ; Spectroscopy ; Temperature structure</subject><ispartof>The Astrophysical journal, 2020-08, Vol.898 (2), p.155</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Aug 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-c822db318570147c97f8a597e4d5a59124edb505f7bf7e956b7d749343fc2fe83</citedby><cites>FETCH-LOGICAL-c350t-c822db318570147c97f8a597e4d5a59124edb505f7bf7e956b7d749343fc2fe83</cites><orcidid>0000-0001-6516-4493 ; 0000-0003-2241-5330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab9b82/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab9b82$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Changeat, Q.</creatorcontrib><creatorcontrib>Al-Refaie, A.</creatorcontrib><title>TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more information, are still limited to a few planets. In the next decade, new facilities such as NASA-James Webb Space Telescope and ESA-Ariel will revolutionize the field of exoplanet atmospheres and we expect that a significant time will be spent on spectral phase-curve observations. Most current models are still limited in their analysis of phase-curve data as they do not consider the planet atmosphere as a whole or they require large computational resources. In this paper we present a semi-analytical model that will allow computing exoplanet emission spectra at different phase angles. Our model provides a way to simulate a large number of observations while being only about four times slower than the traditional forward model for plane-parallel primary eclipse. This model, which is based on the newly developed TauREx 3 framework, will be further developed to allow for phase-curve atmospheric retrievals.</description><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric composition</subject><subject>Atmospheric models</subject><subject>Computer simulation</subject><subject>Emission analysis</subject><subject>Emission spectra</subject><subject>Exoplanet atmospheres</subject><subject>Extrasolar planets</subject><subject>James Webb Space Telescope</subject><subject>Mathematical models</subject><subject>Planetary atmospheres</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Temperature structure</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoWKt3jwWvdsvPJREvo5s_YKLIBG-hSRPsmEtN2qH_vS0VPXl6vPf98eADwDmCEyIonyJGRE4J49NSSy3wAUh-T4cggRDSfEb46zE4iXEzrFjKBFyvy-55-Umyp7cy2qILe3uVzTM0YYvswVd2mzkfRjE3g5otbDShbtra707BkSu30Z79zBS83CzXxV2-ery9L-ar3BAG29wIjCtNkGAcIsqN5E6UTHJLK9ZPhKmtNIPMce24lWymecWpJJQ4g50VJAUXY28T_EdnY6s2vgu7_qXClEDEGOrtKYCjywQfY7BONaF-L8OXQlANjNQARA1A1Mioj1yOkdo3f53_2r8B1vNk5g</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Changeat, Q.</creator><creator>Al-Refaie, A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6516-4493</orcidid><orcidid>https://orcid.org/0000-0003-2241-5330</orcidid></search><sort><creationdate>20200801</creationdate><title>TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description</title><author>Changeat, Q. ; Al-Refaie, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-c822db318570147c97f8a597e4d5a59124edb505f7bf7e956b7d749343fc2fe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric composition</topic><topic>Atmospheric models</topic><topic>Computer simulation</topic><topic>Emission analysis</topic><topic>Emission spectra</topic><topic>Exoplanet atmospheres</topic><topic>Extrasolar planets</topic><topic>James Webb Space Telescope</topic><topic>Mathematical models</topic><topic>Planetary atmospheres</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Temperature structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Changeat, Q.</creatorcontrib><creatorcontrib>Al-Refaie, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changeat, Q.</au><au>Al-Refaie, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>898</volume><issue>2</issue><spage>155</spage><pages>155-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more information, are still limited to a few planets. In the next decade, new facilities such as NASA-James Webb Space Telescope and ESA-Ariel will revolutionize the field of exoplanet atmospheres and we expect that a significant time will be spent on spectral phase-curve observations. Most current models are still limited in their analysis of phase-curve data as they do not consider the planet atmosphere as a whole or they require large computational resources. In this paper we present a semi-analytical model that will allow computing exoplanet emission spectra at different phase angles. Our model provides a way to simulate a large number of observations while being only about four times slower than the traditional forward model for plane-parallel primary eclipse. This model, which is based on the newly developed TauREx 3 framework, will be further developed to allow for phase-curve atmospheric retrievals.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab9b82</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6516-4493</orcidid><orcidid>https://orcid.org/0000-0003-2241-5330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-08, Vol.898 (2), p.155 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ab9b82 |
source | Institute of Physics Open Access Journal Titles |
subjects | Astrophysics Atmosphere Atmospheric composition Atmospheric models Computer simulation Emission analysis Emission spectra Exoplanet atmospheres Extrasolar planets James Webb Space Telescope Mathematical models Planetary atmospheres Space telescopes Spectroscopy Temperature structure |
title | TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TauREx3%20PhaseCurve:%20A%201.5D%20Model%20for%20Phase-curve%20Description&rft.jtitle=The%20Astrophysical%20journal&rft.au=Changeat,%20Q.&rft.date=2020-08-01&rft.volume=898&rft.issue=2&rft.spage=155&rft.pages=155-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab9b82&rft_dat=%3Cproquest_O3W%3E2430155149%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430155149&rft_id=info:pmid/&rfr_iscdi=true |