TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description

In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-08, Vol.898 (2), p.155
Hauptverfasser: Changeat, Q., Al-Refaie, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 155
container_title The Astrophysical journal
container_volume 898
creator Changeat, Q.
Al-Refaie, A.
description In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more information, are still limited to a few planets. In the next decade, new facilities such as NASA-James Webb Space Telescope and ESA-Ariel will revolutionize the field of exoplanet atmospheres and we expect that a significant time will be spent on spectral phase-curve observations. Most current models are still limited in their analysis of phase-curve data as they do not consider the planet atmosphere as a whole or they require large computational resources. In this paper we present a semi-analytical model that will allow computing exoplanet emission spectra at different phase angles. Our model provides a way to simulate a large number of observations while being only about four times slower than the traditional forward model for plane-parallel primary eclipse. This model, which is based on the newly developed TauREx 3 framework, will be further developed to allow for phase-curve atmospheric retrievals.
doi_str_mv 10.3847/1538-4357/ab9b82
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab9b82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430155149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-c822db318570147c97f8a597e4d5a59124edb505f7bf7e956b7d749343fc2fe83</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoWKt3jwWvdsvPJREvo5s_YKLIBG-hSRPsmEtN2qH_vS0VPXl6vPf98eADwDmCEyIonyJGRE4J49NSSy3wAUh-T4cggRDSfEb46zE4iXEzrFjKBFyvy-55-Umyp7cy2qILe3uVzTM0YYvswVd2mzkfRjE3g5otbDShbtra707BkSu30Z79zBS83CzXxV2-ery9L-ar3BAG29wIjCtNkGAcIsqN5E6UTHJLK9ZPhKmtNIPMce24lWymecWpJJQ4g50VJAUXY28T_EdnY6s2vgu7_qXClEDEGOrtKYCjywQfY7BONaF-L8OXQlANjNQARA1A1Mioj1yOkdo3f53_2r8B1vNk5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430155149</pqid></control><display><type>article</type><title>TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description</title><source>Institute of Physics Open Access Journal Titles</source><creator>Changeat, Q. ; Al-Refaie, A.</creator><creatorcontrib>Changeat, Q. ; Al-Refaie, A.</creatorcontrib><description>In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more information, are still limited to a few planets. In the next decade, new facilities such as NASA-James Webb Space Telescope and ESA-Ariel will revolutionize the field of exoplanet atmospheres and we expect that a significant time will be spent on spectral phase-curve observations. Most current models are still limited in their analysis of phase-curve data as they do not consider the planet atmosphere as a whole or they require large computational resources. In this paper we present a semi-analytical model that will allow computing exoplanet emission spectra at different phase angles. Our model provides a way to simulate a large number of observations while being only about four times slower than the traditional forward model for plane-parallel primary eclipse. This model, which is based on the newly developed TauREx 3 framework, will be further developed to allow for phase-curve atmospheric retrievals.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab9b82</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Atmosphere ; Atmospheric composition ; Atmospheric models ; Computer simulation ; Emission analysis ; Emission spectra ; Exoplanet atmospheres ; Extrasolar planets ; James Webb Space Telescope ; Mathematical models ; Planetary atmospheres ; Space telescopes ; Spectroscopy ; Temperature structure</subject><ispartof>The Astrophysical journal, 2020-08, Vol.898 (2), p.155</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Aug 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-c822db318570147c97f8a597e4d5a59124edb505f7bf7e956b7d749343fc2fe83</citedby><cites>FETCH-LOGICAL-c350t-c822db318570147c97f8a597e4d5a59124edb505f7bf7e956b7d749343fc2fe83</cites><orcidid>0000-0001-6516-4493 ; 0000-0003-2241-5330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab9b82/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab9b82$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Changeat, Q.</creatorcontrib><creatorcontrib>Al-Refaie, A.</creatorcontrib><title>TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more information, are still limited to a few planets. In the next decade, new facilities such as NASA-James Webb Space Telescope and ESA-Ariel will revolutionize the field of exoplanet atmospheres and we expect that a significant time will be spent on spectral phase-curve observations. Most current models are still limited in their analysis of phase-curve data as they do not consider the planet atmosphere as a whole or they require large computational resources. In this paper we present a semi-analytical model that will allow computing exoplanet emission spectra at different phase angles. Our model provides a way to simulate a large number of observations while being only about four times slower than the traditional forward model for plane-parallel primary eclipse. This model, which is based on the newly developed TauREx 3 framework, will be further developed to allow for phase-curve atmospheric retrievals.</description><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric composition</subject><subject>Atmospheric models</subject><subject>Computer simulation</subject><subject>Emission analysis</subject><subject>Emission spectra</subject><subject>Exoplanet atmospheres</subject><subject>Extrasolar planets</subject><subject>James Webb Space Telescope</subject><subject>Mathematical models</subject><subject>Planetary atmospheres</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Temperature structure</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoWKt3jwWvdsvPJREvo5s_YKLIBG-hSRPsmEtN2qH_vS0VPXl6vPf98eADwDmCEyIonyJGRE4J49NSSy3wAUh-T4cggRDSfEb46zE4iXEzrFjKBFyvy-55-Umyp7cy2qILe3uVzTM0YYvswVd2mzkfRjE3g5otbDShbtra707BkSu30Z79zBS83CzXxV2-ery9L-ar3BAG29wIjCtNkGAcIsqN5E6UTHJLK9ZPhKmtNIPMce24lWymecWpJJQ4g50VJAUXY28T_EdnY6s2vgu7_qXClEDEGOrtKYCjywQfY7BONaF-L8OXQlANjNQARA1A1Mioj1yOkdo3f53_2r8B1vNk5g</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Changeat, Q.</creator><creator>Al-Refaie, A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6516-4493</orcidid><orcidid>https://orcid.org/0000-0003-2241-5330</orcidid></search><sort><creationdate>20200801</creationdate><title>TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description</title><author>Changeat, Q. ; Al-Refaie, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-c822db318570147c97f8a597e4d5a59124edb505f7bf7e956b7d749343fc2fe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric composition</topic><topic>Atmospheric models</topic><topic>Computer simulation</topic><topic>Emission analysis</topic><topic>Emission spectra</topic><topic>Exoplanet atmospheres</topic><topic>Extrasolar planets</topic><topic>James Webb Space Telescope</topic><topic>Mathematical models</topic><topic>Planetary atmospheres</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Temperature structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Changeat, Q.</creatorcontrib><creatorcontrib>Al-Refaie, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changeat, Q.</au><au>Al-Refaie, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>898</volume><issue>2</issue><spage>155</spage><pages>155-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In recent years, retrieval analysis of exoplanet atmospheres have been very successful, providing deep insights on the composition and the temperature structure of these worlds via transit and eclipse methods. Analysis of spectral phase-curve observations, which in theory provide even more information, are still limited to a few planets. In the next decade, new facilities such as NASA-James Webb Space Telescope and ESA-Ariel will revolutionize the field of exoplanet atmospheres and we expect that a significant time will be spent on spectral phase-curve observations. Most current models are still limited in their analysis of phase-curve data as they do not consider the planet atmosphere as a whole or they require large computational resources. In this paper we present a semi-analytical model that will allow computing exoplanet emission spectra at different phase angles. Our model provides a way to simulate a large number of observations while being only about four times slower than the traditional forward model for plane-parallel primary eclipse. This model, which is based on the newly developed TauREx 3 framework, will be further developed to allow for phase-curve atmospheric retrievals.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab9b82</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6516-4493</orcidid><orcidid>https://orcid.org/0000-0003-2241-5330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-08, Vol.898 (2), p.155
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ab9b82
source Institute of Physics Open Access Journal Titles
subjects Astrophysics
Atmosphere
Atmospheric composition
Atmospheric models
Computer simulation
Emission analysis
Emission spectra
Exoplanet atmospheres
Extrasolar planets
James Webb Space Telescope
Mathematical models
Planetary atmospheres
Space telescopes
Spectroscopy
Temperature structure
title TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TauREx3%20PhaseCurve:%20A%201.5D%20Model%20for%20Phase-curve%20Description&rft.jtitle=The%20Astrophysical%20journal&rft.au=Changeat,%20Q.&rft.date=2020-08-01&rft.volume=898&rft.issue=2&rft.spage=155&rft.pages=155-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab9b82&rft_dat=%3Cproquest_O3W%3E2430155149%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430155149&rft_id=info:pmid/&rfr_iscdi=true