Coupled Thermal and Compositional Evolution of Photoevaporating Planet Envelopes

Photoevaporative mass loss sculpts the atmospheric evolution of tightly orbiting sub-Neptune-mass exoplanets. To date, models of the mass loss from warm Neptunes have assumed that the atmospheric abundances remain constant throughout the planet's evolution. However, the cumulative effects of bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-06, Vol.896 (1), p.48
Hauptverfasser: Malsky, Isaac, Rogers, Leslie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 48
container_title The Astrophysical journal
container_volume 896
creator Malsky, Isaac
Rogers, Leslie A.
description Photoevaporative mass loss sculpts the atmospheric evolution of tightly orbiting sub-Neptune-mass exoplanets. To date, models of the mass loss from warm Neptunes have assumed that the atmospheric abundances remain constant throughout the planet's evolution. However, the cumulative effects of billions of years of escape modulated by diffusive separation and preferential loss of hydrogen can lead to planetary envelopes that are enhanced in helium and metals relative to hydrogen. We have performed the first self-consistent calculations of the coupled thermal, mass-loss, and compositional evolution of hydrogen-helium envelopes surrounding sub-Neptune-mass planets. We extended the Modules for Experiments in Stellar Astrophysics stellar evolution code to model the evolving envelope abundances of photoevaporating planets. We demonstrate that H-He fractionation can lead to planetary envelopes that are significantly enriched in helium and metals compared to their initial primordial compositions. A subset of our model planets-having Rp 3.00 R⊕, initial fenv < 0.5%, and irradiation flux ∼101-103 times that of Earth-obtain final helium mass fractions in excess of Y = 0.40 after several billion years of mass loss. GJ 436b, the planet that originally inspired Hu et al. to propose the formation of helium-enhanced planetary atmospheres, requires a primordial envelope that is too massive to become helium enhanced. Planets with envelope helium fractions of Y = 0.40 have radii that are between 0.5% and 10% smaller (depending on their mass, irradiation flux, and envelope mass fraction) than similar planets with solar composition (Y = 0.24) envelopes. The results of preferential loss of hydrogen may have observable consequences for the Mp − Rp relations and atmospheric spectra of sub-Neptune populations.
doi_str_mv 10.3847/1538-4357/ab873f
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab873f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413648273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-3165e53190bcc240220f845876fb3ce2a6d269b9bbf2ee5c4ad859bc8eb1bba43</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwE9WpdfbZOjlE2FgTtM8BaSNHUdXROTduB_b0tFL3p67335fL88vgBcY3RPOcsXOKU8YTTNF0rznFYnYPYjnYIZQoglGc3fzsFFjPvxJELMwKZwvW9sCbc7Gw6qgaotYeEO3sW6q107KMuja_pxh66Cm53rnD0q74Lq6vYdbhrV2g4u26NtnLfxEpxVqon26nvOwetquS2ekvXL43PxsE4MzUWXUJylNqVYIG0MYYgQVHGW8jyrNDWWqKwkmdBC64pYmxqmSp4KbbjVWGvF6BzcTLk-uI_exk7uXR-Gf6MkDNOMcZLTgUITZYKLMdhK-lAfVPiUGMmxNzmWJMeS5NTbYLmdLLXzv5nK7yUXmcSScenLEbv7A_s39QtZz3xo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413648273</pqid></control><display><type>article</type><title>Coupled Thermal and Compositional Evolution of Photoevaporating Planet Envelopes</title><source>IOP Publishing Free Content</source><creator>Malsky, Isaac ; Rogers, Leslie A.</creator><creatorcontrib>Malsky, Isaac ; Rogers, Leslie A.</creatorcontrib><description>Photoevaporative mass loss sculpts the atmospheric evolution of tightly orbiting sub-Neptune-mass exoplanets. To date, models of the mass loss from warm Neptunes have assumed that the atmospheric abundances remain constant throughout the planet's evolution. However, the cumulative effects of billions of years of escape modulated by diffusive separation and preferential loss of hydrogen can lead to planetary envelopes that are enhanced in helium and metals relative to hydrogen. We have performed the first self-consistent calculations of the coupled thermal, mass-loss, and compositional evolution of hydrogen-helium envelopes surrounding sub-Neptune-mass planets. We extended the Modules for Experiments in Stellar Astrophysics stellar evolution code to model the evolving envelope abundances of photoevaporating planets. We demonstrate that H-He fractionation can lead to planetary envelopes that are significantly enriched in helium and metals compared to their initial primordial compositions. A subset of our model planets-having Rp 3.00 R⊕, initial fenv &lt; 0.5%, and irradiation flux ∼101-103 times that of Earth-obtain final helium mass fractions in excess of Y = 0.40 after several billion years of mass loss. GJ 436b, the planet that originally inspired Hu et al. to propose the formation of helium-enhanced planetary atmospheres, requires a primordial envelope that is too massive to become helium enhanced. Planets with envelope helium fractions of Y = 0.40 have radii that are between 0.5% and 10% smaller (depending on their mass, irradiation flux, and envelope mass fraction) than similar planets with solar composition (Y = 0.24) envelopes. The results of preferential loss of hydrogen may have observable consequences for the Mp − Rp relations and atmospheric spectra of sub-Neptune populations.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab873f</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Abundance ; Astrophysics ; Atmospheric effects ; Atmospheric evolution ; Atmospheric models ; Exoplanet astronomy ; Exoplanet atmospheres ; Exoplanet atmospheric composition ; Exoplanet atmospheric variability ; Exoplanet evolution ; Extrasolar planets ; Fractionation ; Gas giant planets ; Helium ; Hydrogen ; Irradiation ; Neptune ; Planet formation ; Planetary atmospheres ; Planetary composition ; Planetary evolution ; Planetary orbits ; Planets ; Solar composition ; Stellar evolution ; Stellar models</subject><ispartof>The Astrophysical journal, 2020-06, Vol.896 (1), p.48</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-3165e53190bcc240220f845876fb3ce2a6d269b9bbf2ee5c4ad859bc8eb1bba43</citedby><cites>FETCH-LOGICAL-c379t-3165e53190bcc240220f845876fb3ce2a6d269b9bbf2ee5c4ad859bc8eb1bba43</cites><orcidid>0000-0003-0638-3455 ; 0000-0003-0217-3880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab873f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab873f$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Malsky, Isaac</creatorcontrib><creatorcontrib>Rogers, Leslie A.</creatorcontrib><title>Coupled Thermal and Compositional Evolution of Photoevaporating Planet Envelopes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Photoevaporative mass loss sculpts the atmospheric evolution of tightly orbiting sub-Neptune-mass exoplanets. To date, models of the mass loss from warm Neptunes have assumed that the atmospheric abundances remain constant throughout the planet's evolution. However, the cumulative effects of billions of years of escape modulated by diffusive separation and preferential loss of hydrogen can lead to planetary envelopes that are enhanced in helium and metals relative to hydrogen. We have performed the first self-consistent calculations of the coupled thermal, mass-loss, and compositional evolution of hydrogen-helium envelopes surrounding sub-Neptune-mass planets. We extended the Modules for Experiments in Stellar Astrophysics stellar evolution code to model the evolving envelope abundances of photoevaporating planets. We demonstrate that H-He fractionation can lead to planetary envelopes that are significantly enriched in helium and metals compared to their initial primordial compositions. A subset of our model planets-having Rp 3.00 R⊕, initial fenv &lt; 0.5%, and irradiation flux ∼101-103 times that of Earth-obtain final helium mass fractions in excess of Y = 0.40 after several billion years of mass loss. GJ 436b, the planet that originally inspired Hu et al. to propose the formation of helium-enhanced planetary atmospheres, requires a primordial envelope that is too massive to become helium enhanced. Planets with envelope helium fractions of Y = 0.40 have radii that are between 0.5% and 10% smaller (depending on their mass, irradiation flux, and envelope mass fraction) than similar planets with solar composition (Y = 0.24) envelopes. The results of preferential loss of hydrogen may have observable consequences for the Mp − Rp relations and atmospheric spectra of sub-Neptune populations.</description><subject>Abundance</subject><subject>Astrophysics</subject><subject>Atmospheric effects</subject><subject>Atmospheric evolution</subject><subject>Atmospheric models</subject><subject>Exoplanet astronomy</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanet atmospheric composition</subject><subject>Exoplanet atmospheric variability</subject><subject>Exoplanet evolution</subject><subject>Extrasolar planets</subject><subject>Fractionation</subject><subject>Gas giant planets</subject><subject>Helium</subject><subject>Hydrogen</subject><subject>Irradiation</subject><subject>Neptune</subject><subject>Planet formation</subject><subject>Planetary atmospheres</subject><subject>Planetary composition</subject><subject>Planetary evolution</subject><subject>Planetary orbits</subject><subject>Planets</subject><subject>Solar composition</subject><subject>Stellar evolution</subject><subject>Stellar models</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwE9WpdfbZOjlE2FgTtM8BaSNHUdXROTduB_b0tFL3p67335fL88vgBcY3RPOcsXOKU8YTTNF0rznFYnYPYjnYIZQoglGc3fzsFFjPvxJELMwKZwvW9sCbc7Gw6qgaotYeEO3sW6q107KMuja_pxh66Cm53rnD0q74Lq6vYdbhrV2g4u26NtnLfxEpxVqon26nvOwetquS2ekvXL43PxsE4MzUWXUJylNqVYIG0MYYgQVHGW8jyrNDWWqKwkmdBC64pYmxqmSp4KbbjVWGvF6BzcTLk-uI_exk7uXR-Gf6MkDNOMcZLTgUITZYKLMdhK-lAfVPiUGMmxNzmWJMeS5NTbYLmdLLXzv5nK7yUXmcSScenLEbv7A_s39QtZz3xo</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Malsky, Isaac</creator><creator>Rogers, Leslie A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0638-3455</orcidid><orcidid>https://orcid.org/0000-0003-0217-3880</orcidid></search><sort><creationdate>20200601</creationdate><title>Coupled Thermal and Compositional Evolution of Photoevaporating Planet Envelopes</title><author>Malsky, Isaac ; Rogers, Leslie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-3165e53190bcc240220f845876fb3ce2a6d269b9bbf2ee5c4ad859bc8eb1bba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Astrophysics</topic><topic>Atmospheric effects</topic><topic>Atmospheric evolution</topic><topic>Atmospheric models</topic><topic>Exoplanet astronomy</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanet atmospheric composition</topic><topic>Exoplanet atmospheric variability</topic><topic>Exoplanet evolution</topic><topic>Extrasolar planets</topic><topic>Fractionation</topic><topic>Gas giant planets</topic><topic>Helium</topic><topic>Hydrogen</topic><topic>Irradiation</topic><topic>Neptune</topic><topic>Planet formation</topic><topic>Planetary atmospheres</topic><topic>Planetary composition</topic><topic>Planetary evolution</topic><topic>Planetary orbits</topic><topic>Planets</topic><topic>Solar composition</topic><topic>Stellar evolution</topic><topic>Stellar models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malsky, Isaac</creatorcontrib><creatorcontrib>Rogers, Leslie A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malsky, Isaac</au><au>Rogers, Leslie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Thermal and Compositional Evolution of Photoevaporating Planet Envelopes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>896</volume><issue>1</issue><spage>48</spage><pages>48-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Photoevaporative mass loss sculpts the atmospheric evolution of tightly orbiting sub-Neptune-mass exoplanets. To date, models of the mass loss from warm Neptunes have assumed that the atmospheric abundances remain constant throughout the planet's evolution. However, the cumulative effects of billions of years of escape modulated by diffusive separation and preferential loss of hydrogen can lead to planetary envelopes that are enhanced in helium and metals relative to hydrogen. We have performed the first self-consistent calculations of the coupled thermal, mass-loss, and compositional evolution of hydrogen-helium envelopes surrounding sub-Neptune-mass planets. We extended the Modules for Experiments in Stellar Astrophysics stellar evolution code to model the evolving envelope abundances of photoevaporating planets. We demonstrate that H-He fractionation can lead to planetary envelopes that are significantly enriched in helium and metals compared to their initial primordial compositions. A subset of our model planets-having Rp 3.00 R⊕, initial fenv &lt; 0.5%, and irradiation flux ∼101-103 times that of Earth-obtain final helium mass fractions in excess of Y = 0.40 after several billion years of mass loss. GJ 436b, the planet that originally inspired Hu et al. to propose the formation of helium-enhanced planetary atmospheres, requires a primordial envelope that is too massive to become helium enhanced. Planets with envelope helium fractions of Y = 0.40 have radii that are between 0.5% and 10% smaller (depending on their mass, irradiation flux, and envelope mass fraction) than similar planets with solar composition (Y = 0.24) envelopes. The results of preferential loss of hydrogen may have observable consequences for the Mp − Rp relations and atmospheric spectra of sub-Neptune populations.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab873f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0638-3455</orcidid><orcidid>https://orcid.org/0000-0003-0217-3880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-06, Vol.896 (1), p.48
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ab873f
source IOP Publishing Free Content
subjects Abundance
Astrophysics
Atmospheric effects
Atmospheric evolution
Atmospheric models
Exoplanet astronomy
Exoplanet atmospheres
Exoplanet atmospheric composition
Exoplanet atmospheric variability
Exoplanet evolution
Extrasolar planets
Fractionation
Gas giant planets
Helium
Hydrogen
Irradiation
Neptune
Planet formation
Planetary atmospheres
Planetary composition
Planetary evolution
Planetary orbits
Planets
Solar composition
Stellar evolution
Stellar models
title Coupled Thermal and Compositional Evolution of Photoevaporating Planet Envelopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Thermal%20and%20Compositional%20Evolution%20of%20Photoevaporating%20Planet%20Envelopes&rft.jtitle=The%20Astrophysical%20journal&rft.au=Malsky,%20Isaac&rft.date=2020-06-01&rft.volume=896&rft.issue=1&rft.spage=48&rft.pages=48-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab873f&rft_dat=%3Cproquest_O3W%3E2413648273%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413648273&rft_id=info:pmid/&rfr_iscdi=true