Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model

We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. Fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-03, Vol.891 (2), p.143
Hauptverfasser: Tanaka, Hidekazu, Murase, Kiyoka, Tanigawa, Takayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 143
container_title The Astrophysical journal
container_volume 891
creator Tanaka, Hidekazu
Murase, Kiyoka
Tanigawa, Takayuki
description We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters: the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third, the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation.
doi_str_mv 10.3847/1538-4357/ab77af
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab77af</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377715658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-bb3b3edd59aa8fd442211a210251b24e5d0e09d687691a711d5fc50fadab83223</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFbvHhfEm2n3M5scpbQ10GoPCt6WSXZXU2o2ZlPF_96EFL2Ip2Hm_d4w8xC6pGTCE6GmVPIkElyqKeRKgTtCo5_RMRoRQkQUc_V8is5C2PYtS9MRyhdlBTu8hhBswN7hZQlVizc7qGwbJjjLsgmeO2eLtlc3r7719gNq30Bb-gpDZTDge_t5sEDzhdfly0Fde2N35-jEwS7Yi0Mdo6fF_HF2F60eltnsdhUVQsRtlOc859YYmQIkzgjBGKXAKGGS5kxYaYglqYkTFacUFKVGukISBwbyhDPGx-hq2Fs3_n1vQ6u3ft903wXNuFKKylgmHUUGqmh8CI11um7Kt-5sTYnuk9R9bLqPTQ9JdpabwVL6-nfnP_j1HzjUW52kVDNNBde1cfwbNk6A-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377715658</pqid></control><display><type>article</type><title>Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model</title><source>IOP Publishing</source><creator>Tanaka, Hidekazu ; Murase, Kiyoka ; Tanigawa, Takayuki</creator><creatorcontrib>Tanaka, Hidekazu ; Murase, Kiyoka ; Tanigawa, Takayuki</creatorcontrib><description>We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters: the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third, the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab77af</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Astrophysics ; Deposition ; Exoplanet dynamics ; Exoplanet formation ; Extrasolar gas giants ; Extrasolar planets ; Jupiter ; Mass distribution ; Planet formation ; Planetary evolution ; Planetary mass ; Planets ; Protoplanetary disks ; Protoplanets ; Viscosity</subject><ispartof>The Astrophysical journal, 2020-03, Vol.891 (2), p.143</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-bb3b3edd59aa8fd442211a210251b24e5d0e09d687691a711d5fc50fadab83223</citedby><cites>FETCH-LOGICAL-c446t-bb3b3edd59aa8fd442211a210251b24e5d0e09d687691a711d5fc50fadab83223</cites><orcidid>0000-0002-5964-1975 ; 0000-0001-9659-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab77af/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab77af$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Tanaka, Hidekazu</creatorcontrib><creatorcontrib>Murase, Kiyoka</creatorcontrib><creatorcontrib>Tanigawa, Takayuki</creatorcontrib><title>Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters: the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third, the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation.</description><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Deposition</subject><subject>Exoplanet dynamics</subject><subject>Exoplanet formation</subject><subject>Extrasolar gas giants</subject><subject>Extrasolar planets</subject><subject>Jupiter</subject><subject>Mass distribution</subject><subject>Planet formation</subject><subject>Planetary evolution</subject><subject>Planetary mass</subject><subject>Planets</subject><subject>Protoplanetary disks</subject><subject>Protoplanets</subject><subject>Viscosity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFbvHhfEm2n3M5scpbQ10GoPCt6WSXZXU2o2ZlPF_96EFL2Ip2Hm_d4w8xC6pGTCE6GmVPIkElyqKeRKgTtCo5_RMRoRQkQUc_V8is5C2PYtS9MRyhdlBTu8hhBswN7hZQlVizc7qGwbJjjLsgmeO2eLtlc3r7719gNq30Bb-gpDZTDge_t5sEDzhdfly0Fde2N35-jEwS7Yi0Mdo6fF_HF2F60eltnsdhUVQsRtlOc859YYmQIkzgjBGKXAKGGS5kxYaYglqYkTFacUFKVGukISBwbyhDPGx-hq2Fs3_n1vQ6u3ft903wXNuFKKylgmHUUGqmh8CI11um7Kt-5sTYnuk9R9bLqPTQ9JdpabwVL6-nfnP_j1HzjUW52kVDNNBde1cfwbNk6A-A</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Tanaka, Hidekazu</creator><creator>Murase, Kiyoka</creator><creator>Tanigawa, Takayuki</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5964-1975</orcidid><orcidid>https://orcid.org/0000-0001-9659-658X</orcidid></search><sort><creationdate>20200310</creationdate><title>Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model</title><author>Tanaka, Hidekazu ; Murase, Kiyoka ; Tanigawa, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-bb3b3edd59aa8fd442211a210251b24e5d0e09d687691a711d5fc50fadab83223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Deposition</topic><topic>Exoplanet dynamics</topic><topic>Exoplanet formation</topic><topic>Extrasolar gas giants</topic><topic>Extrasolar planets</topic><topic>Jupiter</topic><topic>Mass distribution</topic><topic>Planet formation</topic><topic>Planetary evolution</topic><topic>Planetary mass</topic><topic>Planets</topic><topic>Protoplanetary disks</topic><topic>Protoplanets</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Hidekazu</creatorcontrib><creatorcontrib>Murase, Kiyoka</creatorcontrib><creatorcontrib>Tanigawa, Takayuki</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tanaka, Hidekazu</au><au>Murase, Kiyoka</au><au>Tanigawa, Takayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>891</volume><issue>2</issue><spage>143</spage><pages>143-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters: the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third, the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab77af</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5964-1975</orcidid><orcidid>https://orcid.org/0000-0001-9659-658X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-03, Vol.891 (2), p.143
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ab77af
source IOP Publishing
subjects Accretion disks
Astrophysics
Deposition
Exoplanet dynamics
Exoplanet formation
Extrasolar gas giants
Extrasolar planets
Jupiter
Mass distribution
Planet formation
Planetary evolution
Planetary mass
Planets
Protoplanetary disks
Protoplanets
Viscosity
title Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Final%20Masses%20of%20Giant%20Planets.%20III.%20Effect%20of%20Photoevaporation%20and%20a%20New%20Planetary%20Migration%20Model&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tanaka,%20Hidekazu&rft.date=2020-03-10&rft.volume=891&rft.issue=2&rft.spage=143&rft.pages=143-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab77af&rft_dat=%3Cproquest_O3W%3E2377715658%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377715658&rft_id=info:pmid/&rfr_iscdi=true