Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model
We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. Fi...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-03, Vol.891 (2), p.143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 143 |
container_title | The Astrophysical journal |
container_volume | 891 |
creator | Tanaka, Hidekazu Murase, Kiyoka Tanigawa, Takayuki |
description | We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters: the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third, the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation. |
doi_str_mv | 10.3847/1538-4357/ab77af |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab77af</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377715658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-bb3b3edd59aa8fd442211a210251b24e5d0e09d687691a711d5fc50fadab83223</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFbvHhfEm2n3M5scpbQ10GoPCt6WSXZXU2o2ZlPF_96EFL2Ip2Hm_d4w8xC6pGTCE6GmVPIkElyqKeRKgTtCo5_RMRoRQkQUc_V8is5C2PYtS9MRyhdlBTu8hhBswN7hZQlVizc7qGwbJjjLsgmeO2eLtlc3r7719gNq30Bb-gpDZTDge_t5sEDzhdfly0Fde2N35-jEwS7Yi0Mdo6fF_HF2F60eltnsdhUVQsRtlOc859YYmQIkzgjBGKXAKGGS5kxYaYglqYkTFacUFKVGukISBwbyhDPGx-hq2Fs3_n1vQ6u3ft903wXNuFKKylgmHUUGqmh8CI11um7Kt-5sTYnuk9R9bLqPTQ9JdpabwVL6-nfnP_j1HzjUW52kVDNNBde1cfwbNk6A-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377715658</pqid></control><display><type>article</type><title>Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model</title><source>IOP Publishing</source><creator>Tanaka, Hidekazu ; Murase, Kiyoka ; Tanigawa, Takayuki</creator><creatorcontrib>Tanaka, Hidekazu ; Murase, Kiyoka ; Tanigawa, Takayuki</creatorcontrib><description>We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters: the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third, the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab77af</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Astrophysics ; Deposition ; Exoplanet dynamics ; Exoplanet formation ; Extrasolar gas giants ; Extrasolar planets ; Jupiter ; Mass distribution ; Planet formation ; Planetary evolution ; Planetary mass ; Planets ; Protoplanetary disks ; Protoplanets ; Viscosity</subject><ispartof>The Astrophysical journal, 2020-03, Vol.891 (2), p.143</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-bb3b3edd59aa8fd442211a210251b24e5d0e09d687691a711d5fc50fadab83223</citedby><cites>FETCH-LOGICAL-c446t-bb3b3edd59aa8fd442211a210251b24e5d0e09d687691a711d5fc50fadab83223</cites><orcidid>0000-0002-5964-1975 ; 0000-0001-9659-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab77af/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab77af$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Tanaka, Hidekazu</creatorcontrib><creatorcontrib>Murase, Kiyoka</creatorcontrib><creatorcontrib>Tanigawa, Takayuki</creatorcontrib><title>Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters: the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third, the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation.</description><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Deposition</subject><subject>Exoplanet dynamics</subject><subject>Exoplanet formation</subject><subject>Extrasolar gas giants</subject><subject>Extrasolar planets</subject><subject>Jupiter</subject><subject>Mass distribution</subject><subject>Planet formation</subject><subject>Planetary evolution</subject><subject>Planetary mass</subject><subject>Planets</subject><subject>Protoplanetary disks</subject><subject>Protoplanets</subject><subject>Viscosity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFbvHhfEm2n3M5scpbQ10GoPCt6WSXZXU2o2ZlPF_96EFL2Ip2Hm_d4w8xC6pGTCE6GmVPIkElyqKeRKgTtCo5_RMRoRQkQUc_V8is5C2PYtS9MRyhdlBTu8hhBswN7hZQlVizc7qGwbJjjLsgmeO2eLtlc3r7719gNq30Bb-gpDZTDge_t5sEDzhdfly0Fde2N35-jEwS7Yi0Mdo6fF_HF2F60eltnsdhUVQsRtlOc859YYmQIkzgjBGKXAKGGS5kxYaYglqYkTFacUFKVGukISBwbyhDPGx-hq2Fs3_n1vQ6u3ft903wXNuFKKylgmHUUGqmh8CI11um7Kt-5sTYnuk9R9bLqPTQ9JdpabwVL6-nfnP_j1HzjUW52kVDNNBde1cfwbNk6A-A</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Tanaka, Hidekazu</creator><creator>Murase, Kiyoka</creator><creator>Tanigawa, Takayuki</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5964-1975</orcidid><orcidid>https://orcid.org/0000-0001-9659-658X</orcidid></search><sort><creationdate>20200310</creationdate><title>Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model</title><author>Tanaka, Hidekazu ; Murase, Kiyoka ; Tanigawa, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-bb3b3edd59aa8fd442211a210251b24e5d0e09d687691a711d5fc50fadab83223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Deposition</topic><topic>Exoplanet dynamics</topic><topic>Exoplanet formation</topic><topic>Extrasolar gas giants</topic><topic>Extrasolar planets</topic><topic>Jupiter</topic><topic>Mass distribution</topic><topic>Planet formation</topic><topic>Planetary evolution</topic><topic>Planetary mass</topic><topic>Planets</topic><topic>Protoplanetary disks</topic><topic>Protoplanets</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Hidekazu</creatorcontrib><creatorcontrib>Murase, Kiyoka</creatorcontrib><creatorcontrib>Tanigawa, Takayuki</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tanaka, Hidekazu</au><au>Murase, Kiyoka</au><au>Tanigawa, Takayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>891</volume><issue>2</issue><spage>143</spage><pages>143-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters: the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third, the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab77af</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5964-1975</orcidid><orcidid>https://orcid.org/0000-0001-9659-658X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-03, Vol.891 (2), p.143 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ab77af |
source | IOP Publishing |
subjects | Accretion disks Astrophysics Deposition Exoplanet dynamics Exoplanet formation Extrasolar gas giants Extrasolar planets Jupiter Mass distribution Planet formation Planetary evolution Planetary mass Planets Protoplanetary disks Protoplanets Viscosity |
title | Final Masses of Giant Planets. III. Effect of Photoevaporation and a New Planetary Migration Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Final%20Masses%20of%20Giant%20Planets.%20III.%20Effect%20of%20Photoevaporation%20and%20a%20New%20Planetary%20Migration%20Model&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tanaka,%20Hidekazu&rft.date=2020-03-10&rft.volume=891&rft.issue=2&rft.spage=143&rft.pages=143-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab77af&rft_dat=%3Cproquest_O3W%3E2377715658%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377715658&rft_id=info:pmid/&rfr_iscdi=true |