D/H Ratio in the Interiors of Rocky Protoplanets Accreting in the Solar Nebula

The deuterium/hydrogen (D/H) ratio of primordial water partitioned into a planetary interior seems to be different on Earth and Mars. Water from volcanic rocks originating from Earth's deep mantle has a low D/H ratio with high 3He/4He ratios, implying that it was inherited partially from the so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-01, Vol.889 (1), p.40
Hauptverfasser: Saito, Hiroaki, Kuramoto, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 40
container_title The Astrophysical journal
container_volume 889
creator Saito, Hiroaki
Kuramoto, Kiyoshi
description The deuterium/hydrogen (D/H) ratio of primordial water partitioned into a planetary interior seems to be different on Earth and Mars. Water from volcanic rocks originating from Earth's deep mantle has a low D/H ratio with high 3He/4He ratios, implying that it was inherited partially from the solar nebula. In contrast, the D/H ratio of water in the Martian meteorites considered to represent the mantle does not trend toward that of the solar nebula. These differences may be owing to differences in the types of atmospheric structures formed on protoplanets accreting in the solar nebula. Using a 1D radiative-equilibrium model, we analyze the thermal structure of a hybrid-type protoatmosphere in which the solar nebula component dominates the upper layer while a degassed component dominates the lower layer. Our analysis implies Mars-sized protoplanets maintain a hybrid-type protoatmosphere and the D/H ratio of the lower atmosphere resembles that of the building blocks. Conversely, when the mass is larger than Mars-sized, the compositional stratification is collapsed by convective mixing of the solar nebula component with the degassed component, and the D/H ratio approaches that of the solar nebula. This tendency becomes stronger when the planetary mass is larger. If water vapor is distributed through a magma ocean into the planetary interior, Mars-sized protoplanets are likely to reflect the D/H ratios of the building blocks, while larger protoplanets are likely to have acquired a solar-nebula-like D/H ratio.
doi_str_mv 10.3847/1538-4357/ab5f11
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab5f11</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357566110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-8827069ef1beba5cb2e29f10ec1070a90bf0e26e963209733919bc05dbb300373</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EEqWwM1qCkdDrOC-PVXm0UlVQAYnNsl0bUkIcbGfovydReCwwWdc633d1D0KnBC5pkeQTktIiSmiaT4RMDSF7aPTztY9GAJBEGc2fD9GR99t-jBkbodXVZI7XIpQWlzUOrxov6qBdaZ3H1uC1VW87fO9ssE0lah08nirldCjrl-_Ag62Ewyst20ocowMjKq9Pvt4xerq5fpzNo-Xd7WI2XUYqSdIQFUWcQ8a0IVJLkSoZ65gZAloRyEEwkAZ0nGmW0RhYTikjTCpIN1JSAJrTMTobehtnP1rtA9_a1tXdSh53B6dZRgh0FAyUctZ7pw1vXPku3I4T4L013ivivSI-WOsi50OktM1vp2i2vCgYJzwB3mxMh138gf3b-gkxjHiu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357566110</pqid></control><display><type>article</type><title>D/H Ratio in the Interiors of Rocky Protoplanets Accreting in the Solar Nebula</title><source>Institute of Physics Open Access Journal Titles</source><creator>Saito, Hiroaki ; Kuramoto, Kiyoshi</creator><creatorcontrib>Saito, Hiroaki ; Kuramoto, Kiyoshi</creatorcontrib><description>The deuterium/hydrogen (D/H) ratio of primordial water partitioned into a planetary interior seems to be different on Earth and Mars. Water from volcanic rocks originating from Earth's deep mantle has a low D/H ratio with high 3He/4He ratios, implying that it was inherited partially from the solar nebula. In contrast, the D/H ratio of water in the Martian meteorites considered to represent the mantle does not trend toward that of the solar nebula. These differences may be owing to differences in the types of atmospheric structures formed on protoplanets accreting in the solar nebula. Using a 1D radiative-equilibrium model, we analyze the thermal structure of a hybrid-type protoatmosphere in which the solar nebula component dominates the upper layer while a degassed component dominates the lower layer. Our analysis implies Mars-sized protoplanets maintain a hybrid-type protoatmosphere and the D/H ratio of the lower atmosphere resembles that of the building blocks. Conversely, when the mass is larger than Mars-sized, the compositional stratification is collapsed by convective mixing of the solar nebula component with the degassed component, and the D/H ratio approaches that of the solar nebula. This tendency becomes stronger when the planetary mass is larger. If water vapor is distributed through a magma ocean into the planetary interior, Mars-sized protoplanets are likely to reflect the D/H ratios of the building blocks, while larger protoplanets are likely to have acquired a solar-nebula-like D/H ratio.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab5f11</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Convective mixing ; Deposition ; Deuterium ; Earth (planet) ; Earth mantle ; Hydrogen ; Lower atmosphere ; Magma ; Mars ; Mars volcanoes ; Mars water ; Planet formation ; Planetary atmospheres ; Planetary interiors ; Planetary mantles ; Planetary mass ; Planetary science ; Protoplanets ; SNC meteorites ; Solar corona ; Solar nebula ; Volcanic rocks ; Water vapor</subject><ispartof>The Astrophysical journal, 2020-01, Vol.889 (1), p.40</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 20, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-8827069ef1beba5cb2e29f10ec1070a90bf0e26e963209733919bc05dbb300373</citedby><cites>FETCH-LOGICAL-c445t-8827069ef1beba5cb2e29f10ec1070a90bf0e26e963209733919bc05dbb300373</cites><orcidid>0000-0001-7937-2971 ; 0000-0002-6757-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab5f11/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab5f11$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Saito, Hiroaki</creatorcontrib><creatorcontrib>Kuramoto, Kiyoshi</creatorcontrib><title>D/H Ratio in the Interiors of Rocky Protoplanets Accreting in the Solar Nebula</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The deuterium/hydrogen (D/H) ratio of primordial water partitioned into a planetary interior seems to be different on Earth and Mars. Water from volcanic rocks originating from Earth's deep mantle has a low D/H ratio with high 3He/4He ratios, implying that it was inherited partially from the solar nebula. In contrast, the D/H ratio of water in the Martian meteorites considered to represent the mantle does not trend toward that of the solar nebula. These differences may be owing to differences in the types of atmospheric structures formed on protoplanets accreting in the solar nebula. Using a 1D radiative-equilibrium model, we analyze the thermal structure of a hybrid-type protoatmosphere in which the solar nebula component dominates the upper layer while a degassed component dominates the lower layer. Our analysis implies Mars-sized protoplanets maintain a hybrid-type protoatmosphere and the D/H ratio of the lower atmosphere resembles that of the building blocks. Conversely, when the mass is larger than Mars-sized, the compositional stratification is collapsed by convective mixing of the solar nebula component with the degassed component, and the D/H ratio approaches that of the solar nebula. This tendency becomes stronger when the planetary mass is larger. If water vapor is distributed through a magma ocean into the planetary interior, Mars-sized protoplanets are likely to reflect the D/H ratios of the building blocks, while larger protoplanets are likely to have acquired a solar-nebula-like D/H ratio.</description><subject>Astrophysics</subject><subject>Convective mixing</subject><subject>Deposition</subject><subject>Deuterium</subject><subject>Earth (planet)</subject><subject>Earth mantle</subject><subject>Hydrogen</subject><subject>Lower atmosphere</subject><subject>Magma</subject><subject>Mars</subject><subject>Mars volcanoes</subject><subject>Mars water</subject><subject>Planet formation</subject><subject>Planetary atmospheres</subject><subject>Planetary interiors</subject><subject>Planetary mantles</subject><subject>Planetary mass</subject><subject>Planetary science</subject><subject>Protoplanets</subject><subject>SNC meteorites</subject><subject>Solar corona</subject><subject>Solar nebula</subject><subject>Volcanic rocks</subject><subject>Water vapor</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EEqWwM1qCkdDrOC-PVXm0UlVQAYnNsl0bUkIcbGfovydReCwwWdc633d1D0KnBC5pkeQTktIiSmiaT4RMDSF7aPTztY9GAJBEGc2fD9GR99t-jBkbodXVZI7XIpQWlzUOrxov6qBdaZ3H1uC1VW87fO9ssE0lah08nirldCjrl-_Ag62Ewyst20ocowMjKq9Pvt4xerq5fpzNo-Xd7WI2XUYqSdIQFUWcQ8a0IVJLkSoZ65gZAloRyEEwkAZ0nGmW0RhYTikjTCpIN1JSAJrTMTobehtnP1rtA9_a1tXdSh53B6dZRgh0FAyUctZ7pw1vXPku3I4T4L013ivivSI-WOsi50OktM1vp2i2vCgYJzwB3mxMh138gf3b-gkxjHiu</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Saito, Hiroaki</creator><creator>Kuramoto, Kiyoshi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7937-2971</orcidid><orcidid>https://orcid.org/0000-0002-6757-8064</orcidid></search><sort><creationdate>20200120</creationdate><title>D/H Ratio in the Interiors of Rocky Protoplanets Accreting in the Solar Nebula</title><author>Saito, Hiroaki ; Kuramoto, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-8827069ef1beba5cb2e29f10ec1070a90bf0e26e963209733919bc05dbb300373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Convective mixing</topic><topic>Deposition</topic><topic>Deuterium</topic><topic>Earth (planet)</topic><topic>Earth mantle</topic><topic>Hydrogen</topic><topic>Lower atmosphere</topic><topic>Magma</topic><topic>Mars</topic><topic>Mars volcanoes</topic><topic>Mars water</topic><topic>Planet formation</topic><topic>Planetary atmospheres</topic><topic>Planetary interiors</topic><topic>Planetary mantles</topic><topic>Planetary mass</topic><topic>Planetary science</topic><topic>Protoplanets</topic><topic>SNC meteorites</topic><topic>Solar corona</topic><topic>Solar nebula</topic><topic>Volcanic rocks</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Hiroaki</creatorcontrib><creatorcontrib>Kuramoto, Kiyoshi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saito, Hiroaki</au><au>Kuramoto, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D/H Ratio in the Interiors of Rocky Protoplanets Accreting in the Solar Nebula</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-01-20</date><risdate>2020</risdate><volume>889</volume><issue>1</issue><spage>40</spage><pages>40-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The deuterium/hydrogen (D/H) ratio of primordial water partitioned into a planetary interior seems to be different on Earth and Mars. Water from volcanic rocks originating from Earth's deep mantle has a low D/H ratio with high 3He/4He ratios, implying that it was inherited partially from the solar nebula. In contrast, the D/H ratio of water in the Martian meteorites considered to represent the mantle does not trend toward that of the solar nebula. These differences may be owing to differences in the types of atmospheric structures formed on protoplanets accreting in the solar nebula. Using a 1D radiative-equilibrium model, we analyze the thermal structure of a hybrid-type protoatmosphere in which the solar nebula component dominates the upper layer while a degassed component dominates the lower layer. Our analysis implies Mars-sized protoplanets maintain a hybrid-type protoatmosphere and the D/H ratio of the lower atmosphere resembles that of the building blocks. Conversely, when the mass is larger than Mars-sized, the compositional stratification is collapsed by convective mixing of the solar nebula component with the degassed component, and the D/H ratio approaches that of the solar nebula. This tendency becomes stronger when the planetary mass is larger. If water vapor is distributed through a magma ocean into the planetary interior, Mars-sized protoplanets are likely to reflect the D/H ratios of the building blocks, while larger protoplanets are likely to have acquired a solar-nebula-like D/H ratio.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab5f11</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7937-2971</orcidid><orcidid>https://orcid.org/0000-0002-6757-8064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-01, Vol.889 (1), p.40
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ab5f11
source Institute of Physics Open Access Journal Titles
subjects Astrophysics
Convective mixing
Deposition
Deuterium
Earth (planet)
Earth mantle
Hydrogen
Lower atmosphere
Magma
Mars
Mars volcanoes
Mars water
Planet formation
Planetary atmospheres
Planetary interiors
Planetary mantles
Planetary mass
Planetary science
Protoplanets
SNC meteorites
Solar corona
Solar nebula
Volcanic rocks
Water vapor
title D/H Ratio in the Interiors of Rocky Protoplanets Accreting in the Solar Nebula
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D/H%20Ratio%20in%20the%20Interiors%20of%20Rocky%20Protoplanets%20Accreting%20in%20the%20Solar%20Nebula&rft.jtitle=The%20Astrophysical%20journal&rft.au=Saito,%20Hiroaki&rft.date=2020-01-20&rft.volume=889&rft.issue=1&rft.spage=40&rft.pages=40-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab5f11&rft_dat=%3Cproquest_O3W%3E2357566110%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357566110&rft_id=info:pmid/&rfr_iscdi=true