Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites
The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-10, Vol.884 (1), p.32 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | The Astrophysical journal |
container_volume | 884 |
creator | Jacquet, Emmanuel Pignatale, Francesco C. Chaussidon, Marc Charnoz, Sébastien |
description | The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of the solar protoplanetary disk following its collapse and find that the solid-weighted standard deviation of different nucleosynthetic contributions in the disk is reduced by one order of magnitude compared to the protosolar cloud, whose successive isotopic signatures are fossilized by CAIs. The enrichment of carbonaceous chondrites in r-process components, whose proportions are inferred to have diminished near the end of infall, is consistent with their formation at large heliocentric distances, where the early signatures would have been preferentially preserved after outward advection. We also argue that thermal processing had little effect on the (mass-independent) isotopic composition of bulk meteorites for refractory elements. |
doi_str_mv | 10.3847/1538-4357/ab38c1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab38c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365874909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-da92141e20d5df353c7ccc0fb4a4a58472ac2c6d2810db4d8562d2309a73f8133</originalsourceid><addsrcrecordid>eNp9kd1LwzAUxYMoOKfvPgb0SezMV9f0cRTnBvMDpuBbyNLUdbRJTTJh_73tKvNFfAo393cO954LwCVGI8pZcodjyiNG4-ROrihX-AgMDl_HYIAQYtGYJu-n4Mz7TVeSNB0AMy3Nh3aNK03w0BYwrDV8cTZYbyvpYFbZbQ4zW1Wy8RqWZg8s973lzgddj-B8PoJPW1Vp63embYdSwYmxtaxK7TvJow7aujJofw5OCll5ffHzDsHb9P41m0WL54d5NllEinEUolymBDOsCcrjvKAxVYlSChUrJpmM23WJVESNc8Ixylcs5_GY5ISiVCa04JjSIbjpfdeyEu1ytXQ7YWUpZpOFqM3aCEQoTkmcfOEWvurhxtnPrfZBbOzWmXY-Qeg45glLUdpSqKeUs947XRx8MRLdCUSXt-jyFv0JWsltLylt8-v5D379By6bjeCcCSwoEU2bxjde2JPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365874909</pqid></control><display><type>article</type><title>Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites</title><source>Institute of Physics Open Access Journal Titles</source><creator>Jacquet, Emmanuel ; Pignatale, Francesco C. ; Chaussidon, Marc ; Charnoz, Sébastien</creator><creatorcontrib>Jacquet, Emmanuel ; Pignatale, Francesco C. ; Chaussidon, Marc ; Charnoz, Sébastien</creatorcontrib><description>The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of the solar protoplanetary disk following its collapse and find that the solid-weighted standard deviation of different nucleosynthetic contributions in the disk is reduced by one order of magnitude compared to the protosolar cloud, whose successive isotopic signatures are fossilized by CAIs. The enrichment of carbonaceous chondrites in r-process components, whose proportions are inferred to have diminished near the end of infall, is consistent with their formation at large heliocentric distances, where the early signatures would have been preferentially preserved after outward advection. We also argue that thermal processing had little effect on the (mass-independent) isotopic composition of bulk meteorites for refractory elements.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab38c1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Advection ; Aluminum ; Anomalies ; Astrophysics ; Calcium-aluminum-rich inclusions ; Carbonaceous chondrites ; Chondrites ; Cloud formation ; Clouds ; Fossils ; Heterogeneity ; Isotope composition ; Isotopes ; Meteorites ; meteorites, meteors, meteoroids ; Meteoritic composition ; Meteors & meteorites ; Protoplanetary disks ; Sciences of the Universe ; Signatures ; Solar system ; stars: formation</subject><ispartof>The Astrophysical journal, 2019-10, Vol.884 (1), p.32</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 10, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-da92141e20d5df353c7ccc0fb4a4a58472ac2c6d2810db4d8562d2309a73f8133</citedby><cites>FETCH-LOGICAL-c480t-da92141e20d5df353c7ccc0fb4a4a58472ac2c6d2810db4d8562d2309a73f8133</cites><orcidid>0000-0003-0902-7421 ; 0000-0001-5971-6271 ; 0000-0002-7442-491X ; 0000-0001-8475-0690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab38c1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab38c1$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://mnhn.hal.science/mnhn-02319257$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacquet, Emmanuel</creatorcontrib><creatorcontrib>Pignatale, Francesco C.</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Charnoz, Sébastien</creatorcontrib><title>Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of the solar protoplanetary disk following its collapse and find that the solid-weighted standard deviation of different nucleosynthetic contributions in the disk is reduced by one order of magnitude compared to the protosolar cloud, whose successive isotopic signatures are fossilized by CAIs. The enrichment of carbonaceous chondrites in r-process components, whose proportions are inferred to have diminished near the end of infall, is consistent with their formation at large heliocentric distances, where the early signatures would have been preferentially preserved after outward advection. We also argue that thermal processing had little effect on the (mass-independent) isotopic composition of bulk meteorites for refractory elements.</description><subject>Advection</subject><subject>Aluminum</subject><subject>Anomalies</subject><subject>Astrophysics</subject><subject>Calcium-aluminum-rich inclusions</subject><subject>Carbonaceous chondrites</subject><subject>Chondrites</subject><subject>Cloud formation</subject><subject>Clouds</subject><subject>Fossils</subject><subject>Heterogeneity</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Meteorites</subject><subject>meteorites, meteors, meteoroids</subject><subject>Meteoritic composition</subject><subject>Meteors & meteorites</subject><subject>Protoplanetary disks</subject><subject>Sciences of the Universe</subject><subject>Signatures</subject><subject>Solar system</subject><subject>stars: formation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kd1LwzAUxYMoOKfvPgb0SezMV9f0cRTnBvMDpuBbyNLUdbRJTTJh_73tKvNFfAo393cO954LwCVGI8pZcodjyiNG4-ROrihX-AgMDl_HYIAQYtGYJu-n4Mz7TVeSNB0AMy3Nh3aNK03w0BYwrDV8cTZYbyvpYFbZbQ4zW1Wy8RqWZg8s973lzgddj-B8PoJPW1Vp63embYdSwYmxtaxK7TvJow7aujJofw5OCll5ffHzDsHb9P41m0WL54d5NllEinEUolymBDOsCcrjvKAxVYlSChUrJpmM23WJVESNc8Ixylcs5_GY5ISiVCa04JjSIbjpfdeyEu1ytXQ7YWUpZpOFqM3aCEQoTkmcfOEWvurhxtnPrfZBbOzWmXY-Qeg45glLUdpSqKeUs947XRx8MRLdCUSXt-jyFv0JWsltLylt8-v5D379By6bjeCcCSwoEU2bxjde2JPk</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Jacquet, Emmanuel</creator><creator>Pignatale, Francesco C.</creator><creator>Chaussidon, Marc</creator><creator>Charnoz, Sébastien</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0902-7421</orcidid><orcidid>https://orcid.org/0000-0001-5971-6271</orcidid><orcidid>https://orcid.org/0000-0002-7442-491X</orcidid><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid></search><sort><creationdate>20191010</creationdate><title>Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites</title><author>Jacquet, Emmanuel ; Pignatale, Francesco C. ; Chaussidon, Marc ; Charnoz, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-da92141e20d5df353c7ccc0fb4a4a58472ac2c6d2810db4d8562d2309a73f8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advection</topic><topic>Aluminum</topic><topic>Anomalies</topic><topic>Astrophysics</topic><topic>Calcium-aluminum-rich inclusions</topic><topic>Carbonaceous chondrites</topic><topic>Chondrites</topic><topic>Cloud formation</topic><topic>Clouds</topic><topic>Fossils</topic><topic>Heterogeneity</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Meteorites</topic><topic>meteorites, meteors, meteoroids</topic><topic>Meteoritic composition</topic><topic>Meteors & meteorites</topic><topic>Protoplanetary disks</topic><topic>Sciences of the Universe</topic><topic>Signatures</topic><topic>Solar system</topic><topic>stars: formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacquet, Emmanuel</creatorcontrib><creatorcontrib>Pignatale, Francesco C.</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Charnoz, Sébastien</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jacquet, Emmanuel</au><au>Pignatale, Francesco C.</au><au>Chaussidon, Marc</au><au>Charnoz, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-10-10</date><risdate>2019</risdate><volume>884</volume><issue>1</issue><spage>32</spage><pages>32-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of the solar protoplanetary disk following its collapse and find that the solid-weighted standard deviation of different nucleosynthetic contributions in the disk is reduced by one order of magnitude compared to the protosolar cloud, whose successive isotopic signatures are fossilized by CAIs. The enrichment of carbonaceous chondrites in r-process components, whose proportions are inferred to have diminished near the end of infall, is consistent with their formation at large heliocentric distances, where the early signatures would have been preferentially preserved after outward advection. We also argue that thermal processing had little effect on the (mass-independent) isotopic composition of bulk meteorites for refractory elements.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab38c1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0902-7421</orcidid><orcidid>https://orcid.org/0000-0001-5971-6271</orcidid><orcidid>https://orcid.org/0000-0002-7442-491X</orcidid><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-10, Vol.884 (1), p.32 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ab38c1 |
source | Institute of Physics Open Access Journal Titles |
subjects | Advection Aluminum Anomalies Astrophysics Calcium-aluminum-rich inclusions Carbonaceous chondrites Chondrites Cloud formation Clouds Fossils Heterogeneity Isotope composition Isotopes Meteorites meteorites, meteors, meteoroids Meteoritic composition Meteors & meteorites Protoplanetary disks Sciences of the Universe Signatures Solar system stars: formation |
title | Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprints%20of%20the%20Protosolar%20Cloud%20Collapse%20in%20the%20Solar%20System.%20II.%20Nucleosynthetic%20Anomalies%20in%20Meteorites&rft.jtitle=The%20Astrophysical%20journal&rft.au=Jacquet,%20Emmanuel&rft.date=2019-10-10&rft.volume=884&rft.issue=1&rft.spage=32&rft.pages=32-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab38c1&rft_dat=%3Cproquest_O3W%3E2365874909%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365874909&rft_id=info:pmid/&rfr_iscdi=true |