Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites

The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-10, Vol.884 (1), p.32
Hauptverfasser: Jacquet, Emmanuel, Pignatale, Francesco C., Chaussidon, Marc, Charnoz, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 32
container_title The Astrophysical journal
container_volume 884
creator Jacquet, Emmanuel
Pignatale, Francesco C.
Chaussidon, Marc
Charnoz, Sébastien
description The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of the solar protoplanetary disk following its collapse and find that the solid-weighted standard deviation of different nucleosynthetic contributions in the disk is reduced by one order of magnitude compared to the protosolar cloud, whose successive isotopic signatures are fossilized by CAIs. The enrichment of carbonaceous chondrites in r-process components, whose proportions are inferred to have diminished near the end of infall, is consistent with their formation at large heliocentric distances, where the early signatures would have been preferentially preserved after outward advection. We also argue that thermal processing had little effect on the (mass-independent) isotopic composition of bulk meteorites for refractory elements.
doi_str_mv 10.3847/1538-4357/ab38c1
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab38c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365874909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-da92141e20d5df353c7ccc0fb4a4a58472ac2c6d2810db4d8562d2309a73f8133</originalsourceid><addsrcrecordid>eNp9kd1LwzAUxYMoOKfvPgb0SezMV9f0cRTnBvMDpuBbyNLUdbRJTTJh_73tKvNFfAo393cO954LwCVGI8pZcodjyiNG4-ROrihX-AgMDl_HYIAQYtGYJu-n4Mz7TVeSNB0AMy3Nh3aNK03w0BYwrDV8cTZYbyvpYFbZbQ4zW1Wy8RqWZg8s973lzgddj-B8PoJPW1Vp63embYdSwYmxtaxK7TvJow7aujJofw5OCll5ffHzDsHb9P41m0WL54d5NllEinEUolymBDOsCcrjvKAxVYlSChUrJpmM23WJVESNc8Ixylcs5_GY5ISiVCa04JjSIbjpfdeyEu1ytXQ7YWUpZpOFqM3aCEQoTkmcfOEWvurhxtnPrfZBbOzWmXY-Qeg45glLUdpSqKeUs947XRx8MRLdCUSXt-jyFv0JWsltLylt8-v5D379By6bjeCcCSwoEU2bxjde2JPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365874909</pqid></control><display><type>article</type><title>Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites</title><source>Institute of Physics Open Access Journal Titles</source><creator>Jacquet, Emmanuel ; Pignatale, Francesco C. ; Chaussidon, Marc ; Charnoz, Sébastien</creator><creatorcontrib>Jacquet, Emmanuel ; Pignatale, Francesco C. ; Chaussidon, Marc ; Charnoz, Sébastien</creatorcontrib><description>The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of the solar protoplanetary disk following its collapse and find that the solid-weighted standard deviation of different nucleosynthetic contributions in the disk is reduced by one order of magnitude compared to the protosolar cloud, whose successive isotopic signatures are fossilized by CAIs. The enrichment of carbonaceous chondrites in r-process components, whose proportions are inferred to have diminished near the end of infall, is consistent with their formation at large heliocentric distances, where the early signatures would have been preferentially preserved after outward advection. We also argue that thermal processing had little effect on the (mass-independent) isotopic composition of bulk meteorites for refractory elements.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab38c1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Advection ; Aluminum ; Anomalies ; Astrophysics ; Calcium-aluminum-rich inclusions ; Carbonaceous chondrites ; Chondrites ; Cloud formation ; Clouds ; Fossils ; Heterogeneity ; Isotope composition ; Isotopes ; Meteorites ; meteorites, meteors, meteoroids ; Meteoritic composition ; Meteors &amp; meteorites ; Protoplanetary disks ; Sciences of the Universe ; Signatures ; Solar system ; stars: formation</subject><ispartof>The Astrophysical journal, 2019-10, Vol.884 (1), p.32</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 10, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-da92141e20d5df353c7ccc0fb4a4a58472ac2c6d2810db4d8562d2309a73f8133</citedby><cites>FETCH-LOGICAL-c480t-da92141e20d5df353c7ccc0fb4a4a58472ac2c6d2810db4d8562d2309a73f8133</cites><orcidid>0000-0003-0902-7421 ; 0000-0001-5971-6271 ; 0000-0002-7442-491X ; 0000-0001-8475-0690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab38c1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab38c1$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://mnhn.hal.science/mnhn-02319257$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacquet, Emmanuel</creatorcontrib><creatorcontrib>Pignatale, Francesco C.</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Charnoz, Sébastien</creatorcontrib><title>Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of the solar protoplanetary disk following its collapse and find that the solid-weighted standard deviation of different nucleosynthetic contributions in the disk is reduced by one order of magnitude compared to the protosolar cloud, whose successive isotopic signatures are fossilized by CAIs. The enrichment of carbonaceous chondrites in r-process components, whose proportions are inferred to have diminished near the end of infall, is consistent with their formation at large heliocentric distances, where the early signatures would have been preferentially preserved after outward advection. We also argue that thermal processing had little effect on the (mass-independent) isotopic composition of bulk meteorites for refractory elements.</description><subject>Advection</subject><subject>Aluminum</subject><subject>Anomalies</subject><subject>Astrophysics</subject><subject>Calcium-aluminum-rich inclusions</subject><subject>Carbonaceous chondrites</subject><subject>Chondrites</subject><subject>Cloud formation</subject><subject>Clouds</subject><subject>Fossils</subject><subject>Heterogeneity</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Meteorites</subject><subject>meteorites, meteors, meteoroids</subject><subject>Meteoritic composition</subject><subject>Meteors &amp; meteorites</subject><subject>Protoplanetary disks</subject><subject>Sciences of the Universe</subject><subject>Signatures</subject><subject>Solar system</subject><subject>stars: formation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kd1LwzAUxYMoOKfvPgb0SezMV9f0cRTnBvMDpuBbyNLUdbRJTTJh_73tKvNFfAo393cO954LwCVGI8pZcodjyiNG4-ROrihX-AgMDl_HYIAQYtGYJu-n4Mz7TVeSNB0AMy3Nh3aNK03w0BYwrDV8cTZYbyvpYFbZbQ4zW1Wy8RqWZg8s973lzgddj-B8PoJPW1Vp63embYdSwYmxtaxK7TvJow7aujJofw5OCll5ffHzDsHb9P41m0WL54d5NllEinEUolymBDOsCcrjvKAxVYlSChUrJpmM23WJVESNc8Ixylcs5_GY5ISiVCa04JjSIbjpfdeyEu1ytXQ7YWUpZpOFqM3aCEQoTkmcfOEWvurhxtnPrfZBbOzWmXY-Qeg45glLUdpSqKeUs947XRx8MRLdCUSXt-jyFv0JWsltLylt8-v5D379By6bjeCcCSwoEU2bxjde2JPk</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Jacquet, Emmanuel</creator><creator>Pignatale, Francesco C.</creator><creator>Chaussidon, Marc</creator><creator>Charnoz, Sébastien</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0902-7421</orcidid><orcidid>https://orcid.org/0000-0001-5971-6271</orcidid><orcidid>https://orcid.org/0000-0002-7442-491X</orcidid><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid></search><sort><creationdate>20191010</creationdate><title>Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites</title><author>Jacquet, Emmanuel ; Pignatale, Francesco C. ; Chaussidon, Marc ; Charnoz, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-da92141e20d5df353c7ccc0fb4a4a58472ac2c6d2810db4d8562d2309a73f8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advection</topic><topic>Aluminum</topic><topic>Anomalies</topic><topic>Astrophysics</topic><topic>Calcium-aluminum-rich inclusions</topic><topic>Carbonaceous chondrites</topic><topic>Chondrites</topic><topic>Cloud formation</topic><topic>Clouds</topic><topic>Fossils</topic><topic>Heterogeneity</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Meteorites</topic><topic>meteorites, meteors, meteoroids</topic><topic>Meteoritic composition</topic><topic>Meteors &amp; meteorites</topic><topic>Protoplanetary disks</topic><topic>Sciences of the Universe</topic><topic>Signatures</topic><topic>Solar system</topic><topic>stars: formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacquet, Emmanuel</creatorcontrib><creatorcontrib>Pignatale, Francesco C.</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Charnoz, Sébastien</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jacquet, Emmanuel</au><au>Pignatale, Francesco C.</au><au>Chaussidon, Marc</au><au>Charnoz, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-10-10</date><risdate>2019</risdate><volume>884</volume><issue>1</issue><spage>32</spage><pages>32-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The isotopic heterogeneity of the solar system shown by meteorite analyses is more pronounced for its earliest objects, the calcium-aluminum-rich inclusions (CAIs). This suggests that it was inherited from spatial variations in stardust populations in the protosolar cloud. We model the formation of the solar protoplanetary disk following its collapse and find that the solid-weighted standard deviation of different nucleosynthetic contributions in the disk is reduced by one order of magnitude compared to the protosolar cloud, whose successive isotopic signatures are fossilized by CAIs. The enrichment of carbonaceous chondrites in r-process components, whose proportions are inferred to have diminished near the end of infall, is consistent with their formation at large heliocentric distances, where the early signatures would have been preferentially preserved after outward advection. We also argue that thermal processing had little effect on the (mass-independent) isotopic composition of bulk meteorites for refractory elements.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab38c1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0902-7421</orcidid><orcidid>https://orcid.org/0000-0001-5971-6271</orcidid><orcidid>https://orcid.org/0000-0002-7442-491X</orcidid><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-10, Vol.884 (1), p.32
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ab38c1
source Institute of Physics Open Access Journal Titles
subjects Advection
Aluminum
Anomalies
Astrophysics
Calcium-aluminum-rich inclusions
Carbonaceous chondrites
Chondrites
Cloud formation
Clouds
Fossils
Heterogeneity
Isotope composition
Isotopes
Meteorites
meteorites, meteors, meteoroids
Meteoritic composition
Meteors & meteorites
Protoplanetary disks
Sciences of the Universe
Signatures
Solar system
stars: formation
title Fingerprints of the Protosolar Cloud Collapse in the Solar System. II. Nucleosynthetic Anomalies in Meteorites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprints%20of%20the%20Protosolar%20Cloud%20Collapse%20in%20the%20Solar%20System.%20II.%20Nucleosynthetic%20Anomalies%20in%20Meteorites&rft.jtitle=The%20Astrophysical%20journal&rft.au=Jacquet,%20Emmanuel&rft.date=2019-10-10&rft.volume=884&rft.issue=1&rft.spage=32&rft.pages=32-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab38c1&rft_dat=%3Cproquest_O3W%3E2365874909%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365874909&rft_id=info:pmid/&rfr_iscdi=true