A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition

We present a uniform catalog of accurate distances to local molecular clouds informed by the Gaia DR2 data release. Our methodology builds on that of Schlafly et al. First, we infer the distance and extinction to stars along sightlines toward the clouds using optical and near-infrared photometry. Wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-07, Vol.879 (2), p.125
Hauptverfasser: Zucker, Catherine, Speagle, Joshua S., Schlafly, Edward F., Green, Gregory M., Finkbeiner, Douglas P., Goodman, Alyssa A., Alves, João
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 125
container_title The Astrophysical journal
container_volume 879
creator Zucker, Catherine
Speagle, Joshua S.
Schlafly, Edward F.
Green, Gregory M.
Finkbeiner, Douglas P.
Goodman, Alyssa A.
Alves, João
description We present a uniform catalog of accurate distances to local molecular clouds informed by the Gaia DR2 data release. Our methodology builds on that of Schlafly et al. First, we infer the distance and extinction to stars along sightlines toward the clouds using optical and near-infrared photometry. When available, we incorporate knowledge of the stellar distances obtained from Gaia DR2 parallax measurements. We model these per-star distance-extinction estimates as being caused by a dust screen with a 2D morphology derived from Planck at an unknown distance, which we then fit for using a nested sampling algorithm. We provide updated distances to the Schlafly et al. sightlines toward the Dame et al. and Magnani et al. clouds, finding good agreement with the earlier work. For a subset of 27 clouds, we construct interactive pixelated distance maps to further study detailed cloud structure, and find several clouds which display clear distance gradients and/or are comprised of multiple components. We use these maps to determine robust average distances to these clouds. The characteristic combined uncertainty on our distances is 5%-6%, though this can be higher for clouds at greater distances, due to the limitations of our single-cloud model.
doi_str_mv 10.3847/1538-4357/ab2388
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab2388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365859503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-362a8f2a0729655026467a5cbfbffb773c617537313fa0f58582a7745f9d09db3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwGv1qVJk7TeRjenUBFkA2_hNU1mR21m0h78722p6MnT4z2-3-_Bh9B1TO5YmshFzFkaJYzLBZSUpekJmv2eTtGMEJJEgsm3c3QRwmFcaZbN0G6JC_B7g3PooHF77Cxeat176Axe1aGDVpuAO4cLp6HBz64xum_A47xxfRXu8fbd4A3UgFevFK-ruqtde4nOLDTBXP3MOdo9rLf5Y1S8bJ7yZRHpJBZdxASF1FIgkmaCc0JFIiRwXdrS2lJKpkUsOZMsZhaI5SlPKUiZcJtVJKtKNkc3U-_Ru8_ehE4dXO_b4aWiTAx8xgkbKDJR2rsQvLHq6OsP8F8qJmqUp0ZTajSlJnlD5HaK1O741_kv_g1w0GzS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365859503</pqid></control><display><type>article</type><title>A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition</title><source>Open Access: IOP Publishing Free Content</source><creator>Zucker, Catherine ; Speagle, Joshua S. ; Schlafly, Edward F. ; Green, Gregory M. ; Finkbeiner, Douglas P. ; Goodman, Alyssa A. ; Alves, João</creator><creatorcontrib>Zucker, Catherine ; Speagle, Joshua S. ; Schlafly, Edward F. ; Green, Gregory M. ; Finkbeiner, Douglas P. ; Goodman, Alyssa A. ; Alves, João</creatorcontrib><description>We present a uniform catalog of accurate distances to local molecular clouds informed by the Gaia DR2 data release. Our methodology builds on that of Schlafly et al. First, we infer the distance and extinction to stars along sightlines toward the clouds using optical and near-infrared photometry. When available, we incorporate knowledge of the stellar distances obtained from Gaia DR2 parallax measurements. We model these per-star distance-extinction estimates as being caused by a dust screen with a 2D morphology derived from Planck at an unknown distance, which we then fit for using a nested sampling algorithm. We provide updated distances to the Schlafly et al. sightlines toward the Dame et al. and Magnani et al. clouds, finding good agreement with the earlier work. For a subset of 27 clouds, we construct interactive pixelated distance maps to further study detailed cloud structure, and find several clouds which display clear distance gradients and/or are comprised of multiple components. We use these maps to determine robust average distances to these clouds. The characteristic combined uncertainty on our distances is 5%-6%, though this can be higher for clouds at greater distances, due to the limitations of our single-cloud model.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab2388</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrophysics ; Cloud structure ; Clouds ; dust, extinction ; Extinction ; Infrared photometry ; ISM: clouds ; methods: statistical ; Molecular clouds ; Morphology ; Parallax ; stars: distances</subject><ispartof>The Astrophysical journal, 2019-07, Vol.879 (2), p.125</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-362a8f2a0729655026467a5cbfbffb773c617537313fa0f58582a7745f9d09db3</citedby><cites>FETCH-LOGICAL-c416t-362a8f2a0729655026467a5cbfbffb773c617537313fa0f58582a7745f9d09db3</cites><orcidid>0000-0003-1312-0477 ; 0000-0002-2250-730X ; 0000-0003-2808-275X ; 0000-0001-5417-2260 ; 0000-0002-3569-7421 ; 0000-0002-4355-0921 ; 0000-0003-2573-9832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab2388/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab2388$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Zucker, Catherine</creatorcontrib><creatorcontrib>Speagle, Joshua S.</creatorcontrib><creatorcontrib>Schlafly, Edward F.</creatorcontrib><creatorcontrib>Green, Gregory M.</creatorcontrib><creatorcontrib>Finkbeiner, Douglas P.</creatorcontrib><creatorcontrib>Goodman, Alyssa A.</creatorcontrib><creatorcontrib>Alves, João</creatorcontrib><title>A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a uniform catalog of accurate distances to local molecular clouds informed by the Gaia DR2 data release. Our methodology builds on that of Schlafly et al. First, we infer the distance and extinction to stars along sightlines toward the clouds using optical and near-infrared photometry. When available, we incorporate knowledge of the stellar distances obtained from Gaia DR2 parallax measurements. We model these per-star distance-extinction estimates as being caused by a dust screen with a 2D morphology derived from Planck at an unknown distance, which we then fit for using a nested sampling algorithm. We provide updated distances to the Schlafly et al. sightlines toward the Dame et al. and Magnani et al. clouds, finding good agreement with the earlier work. For a subset of 27 clouds, we construct interactive pixelated distance maps to further study detailed cloud structure, and find several clouds which display clear distance gradients and/or are comprised of multiple components. We use these maps to determine robust average distances to these clouds. The characteristic combined uncertainty on our distances is 5%-6%, though this can be higher for clouds at greater distances, due to the limitations of our single-cloud model.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Cloud structure</subject><subject>Clouds</subject><subject>dust, extinction</subject><subject>Extinction</subject><subject>Infrared photometry</subject><subject>ISM: clouds</subject><subject>methods: statistical</subject><subject>Molecular clouds</subject><subject>Morphology</subject><subject>Parallax</subject><subject>stars: distances</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwGv1qVJk7TeRjenUBFkA2_hNU1mR21m0h78722p6MnT4z2-3-_Bh9B1TO5YmshFzFkaJYzLBZSUpekJmv2eTtGMEJJEgsm3c3QRwmFcaZbN0G6JC_B7g3PooHF77Cxeat176Axe1aGDVpuAO4cLp6HBz64xum_A47xxfRXu8fbd4A3UgFevFK-ruqtde4nOLDTBXP3MOdo9rLf5Y1S8bJ7yZRHpJBZdxASF1FIgkmaCc0JFIiRwXdrS2lJKpkUsOZMsZhaI5SlPKUiZcJtVJKtKNkc3U-_Ru8_ehE4dXO_b4aWiTAx8xgkbKDJR2rsQvLHq6OsP8F8qJmqUp0ZTajSlJnlD5HaK1O741_kv_g1w0GzS</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Zucker, Catherine</creator><creator>Speagle, Joshua S.</creator><creator>Schlafly, Edward F.</creator><creator>Green, Gregory M.</creator><creator>Finkbeiner, Douglas P.</creator><creator>Goodman, Alyssa A.</creator><creator>Alves, João</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1312-0477</orcidid><orcidid>https://orcid.org/0000-0002-2250-730X</orcidid><orcidid>https://orcid.org/0000-0003-2808-275X</orcidid><orcidid>https://orcid.org/0000-0001-5417-2260</orcidid><orcidid>https://orcid.org/0000-0002-3569-7421</orcidid><orcidid>https://orcid.org/0000-0002-4355-0921</orcidid><orcidid>https://orcid.org/0000-0003-2573-9832</orcidid></search><sort><creationdate>20190710</creationdate><title>A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition</title><author>Zucker, Catherine ; Speagle, Joshua S. ; Schlafly, Edward F. ; Green, Gregory M. ; Finkbeiner, Douglas P. ; Goodman, Alyssa A. ; Alves, João</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-362a8f2a0729655026467a5cbfbffb773c617537313fa0f58582a7745f9d09db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Cloud structure</topic><topic>Clouds</topic><topic>dust, extinction</topic><topic>Extinction</topic><topic>Infrared photometry</topic><topic>ISM: clouds</topic><topic>methods: statistical</topic><topic>Molecular clouds</topic><topic>Morphology</topic><topic>Parallax</topic><topic>stars: distances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zucker, Catherine</creatorcontrib><creatorcontrib>Speagle, Joshua S.</creatorcontrib><creatorcontrib>Schlafly, Edward F.</creatorcontrib><creatorcontrib>Green, Gregory M.</creatorcontrib><creatorcontrib>Finkbeiner, Douglas P.</creatorcontrib><creatorcontrib>Goodman, Alyssa A.</creatorcontrib><creatorcontrib>Alves, João</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zucker, Catherine</au><au>Speagle, Joshua S.</au><au>Schlafly, Edward F.</au><au>Green, Gregory M.</au><au>Finkbeiner, Douglas P.</au><au>Goodman, Alyssa A.</au><au>Alves, João</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-07-10</date><risdate>2019</risdate><volume>879</volume><issue>2</issue><spage>125</spage><pages>125-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a uniform catalog of accurate distances to local molecular clouds informed by the Gaia DR2 data release. Our methodology builds on that of Schlafly et al. First, we infer the distance and extinction to stars along sightlines toward the clouds using optical and near-infrared photometry. When available, we incorporate knowledge of the stellar distances obtained from Gaia DR2 parallax measurements. We model these per-star distance-extinction estimates as being caused by a dust screen with a 2D morphology derived from Planck at an unknown distance, which we then fit for using a nested sampling algorithm. We provide updated distances to the Schlafly et al. sightlines toward the Dame et al. and Magnani et al. clouds, finding good agreement with the earlier work. For a subset of 27 clouds, we construct interactive pixelated distance maps to further study detailed cloud structure, and find several clouds which display clear distance gradients and/or are comprised of multiple components. We use these maps to determine robust average distances to these clouds. The characteristic combined uncertainty on our distances is 5%-6%, though this can be higher for clouds at greater distances, due to the limitations of our single-cloud model.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab2388</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1312-0477</orcidid><orcidid>https://orcid.org/0000-0002-2250-730X</orcidid><orcidid>https://orcid.org/0000-0003-2808-275X</orcidid><orcidid>https://orcid.org/0000-0001-5417-2260</orcidid><orcidid>https://orcid.org/0000-0002-3569-7421</orcidid><orcidid>https://orcid.org/0000-0002-4355-0921</orcidid><orcidid>https://orcid.org/0000-0003-2573-9832</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-07, Vol.879 (2), p.125
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ab2388
source Open Access: IOP Publishing Free Content
subjects Algorithms
Astrophysics
Cloud structure
Clouds
dust, extinction
Extinction
Infrared photometry
ISM: clouds
methods: statistical
Molecular clouds
Morphology
Parallax
stars: distances
title A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Large%20Catalog%20of%20Accurate%20Distances%20to%20Local%20Molecular%20Clouds:%20The%20Gaia%20DR2%20Edition&rft.jtitle=The%20Astrophysical%20journal&rft.au=Zucker,%20Catherine&rft.date=2019-07-10&rft.volume=879&rft.issue=2&rft.spage=125&rft.pages=125-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab2388&rft_dat=%3Cproquest_O3W%3E2365859503%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365859503&rft_id=info:pmid/&rfr_iscdi=true