Evaluating the Optical Classification of Fermi BCUs Using Machine Learning

In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-02, Vol.872 (2), p.189
Hauptverfasser: Kang, Shi-Ju, Fan, Jun-Hui, Mao, Weiming, Wu, Qingwen, Feng, Jianchao, Yin, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 189
container_title The Astrophysical journal
container_volume 872
creator Kang, Shi-Ju
Fan, Jun-Hui
Mao, Weiming
Wu, Qingwen
Feng, Jianchao
Yin, Yue
description In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The potential classification of BCUs using machine-learning algorithms is essential. Based on the 3LAC Clean Sample, we collect 1420 Fermi blazars with eight parameters of γ-ray photon spectral index; radio flux; flux density; curve significance; the integral photon flux in 100-300 MeV, 0.3-1 GeV, and 10-100 GeV; and variability index. Here we apply four different supervised machine-learning (SML) algorithms (decision trees, random forests, support vector machines, and Mclust Gaussian finite mixture models) to evaluate the classification of BCUs based on the direct observational properties. All four methods can perform exceedingly well with more accuracy and can effectively forecast the classification of Fermi BCUs. The evaluating results show that the results of these methods (SML) are valid and robust, where about one-fourth of sources are flat-spectrum radio quasars (FSRQs) and three-fourths are BL Lacertae (BL Lacs) in 400 BCUs, which are consistent with some other recent results. Although a number of factors influence the accuracy of SML, the results are stable at a fixed ratio 1:3 between FSRQs and BL Lacs, which suggests that the SML can provide an effective method to evaluate the potential classification of BCUs. Among the four methods, Mclust Gaussian Mixture Modeling has the highest accuracy for our training sample (4/5, seed = 123).
doi_str_mv 10.3847/1538-4357/ab0383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab0383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365801120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1497a799c2f4001b196dfab6c8a91e8ded730dbc73aabc3b3973a18f620277593</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQbEm9V8tE1y1GXXD1b24oK3ME0TN0u3rUlX8L-3paIXPc2bx2_ewEPonJJrLlNxQzMuk5Rn4gYKwiU_QJMf6xBNCCFpknPxeoxOYtwOK1Nqgp7mH1DtofP1G-42Fq_azhuo8KyCGL3rdeebGjcOL2zYeXw3W0e8jgP-DGbja4uXFkLdG6foyEEV7dn3nKL1Yv4ye0iWq_vH2e0yMVySLqGpEiCUMsylhNCCqrx0UORGgqJWlrYUnJSFERygMLzgqldUupwRJkSm-BRdjLltaN73NnZ62-xD3b_UjOeZJJQy0lNkpExoYgzW6Tb4HYRPTYkeGtNDPXqoR4-N9SeX44lv2t9MaLdaCqaZplLptnQ9d_UH92_sF_8Dd7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365801120</pqid></control><display><type>article</type><title>Evaluating the Optical Classification of Fermi BCUs Using Machine Learning</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kang, Shi-Ju ; Fan, Jun-Hui ; Mao, Weiming ; Wu, Qingwen ; Feng, Jianchao ; Yin, Yue</creator><creatorcontrib>Kang, Shi-Ju ; Fan, Jun-Hui ; Mao, Weiming ; Wu, Qingwen ; Feng, Jianchao ; Yin, Yue</creatorcontrib><description>In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The potential classification of BCUs using machine-learning algorithms is essential. Based on the 3LAC Clean Sample, we collect 1420 Fermi blazars with eight parameters of γ-ray photon spectral index; radio flux; flux density; curve significance; the integral photon flux in 100-300 MeV, 0.3-1 GeV, and 10-100 GeV; and variability index. Here we apply four different supervised machine-learning (SML) algorithms (decision trees, random forests, support vector machines, and Mclust Gaussian finite mixture models) to evaluate the classification of BCUs based on the direct observational properties. All four methods can perform exceedingly well with more accuracy and can effectively forecast the classification of Fermi BCUs. The evaluating results show that the results of these methods (SML) are valid and robust, where about one-fourth of sources are flat-spectrum radio quasars (FSRQs) and three-fourths are BL Lacertae (BL Lacs) in 400 BCUs, which are consistent with some other recent results. Although a number of factors influence the accuracy of SML, the results are stable at a fixed ratio 1:3 between FSRQs and BL Lacs, which suggests that the SML can provide an effective method to evaluate the potential classification of BCUs. Among the four methods, Mclust Gaussian Mixture Modeling has the highest accuracy for our training sample (4/5, seed = 123).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab0383</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accuracy ; Active galactic nuclei ; Algorithms ; Astrophysics ; BL Lacertae objects: general ; Blazars ; Celestial bodies ; Classification ; Decision trees ; Evaluation ; Fluctuations ; Flux density ; gamma rays: galaxies ; Machine learning ; Mathematical models ; methods: statistical ; Model accuracy ; Optical properties ; Photons ; Probabilistic models ; Quasars ; quasars: general ; Radio sources (astronomy) ; Spectroscopy ; Support vector machines</subject><ispartof>The Astrophysical journal, 2019-02, Vol.872 (2), p.189</ispartof><rights>2019. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Feb 20, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1497a799c2f4001b196dfab6c8a91e8ded730dbc73aabc3b3973a18f620277593</citedby><cites>FETCH-LOGICAL-c380t-1497a799c2f4001b196dfab6c8a91e8ded730dbc73aabc3b3973a18f620277593</cites><orcidid>0000-0002-9071-5469 ; 0000-0003-4773-4987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab0383/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids></links><search><creatorcontrib>Kang, Shi-Ju</creatorcontrib><creatorcontrib>Fan, Jun-Hui</creatorcontrib><creatorcontrib>Mao, Weiming</creatorcontrib><creatorcontrib>Wu, Qingwen</creatorcontrib><creatorcontrib>Feng, Jianchao</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><title>Evaluating the Optical Classification of Fermi BCUs Using Machine Learning</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The potential classification of BCUs using machine-learning algorithms is essential. Based on the 3LAC Clean Sample, we collect 1420 Fermi blazars with eight parameters of γ-ray photon spectral index; radio flux; flux density; curve significance; the integral photon flux in 100-300 MeV, 0.3-1 GeV, and 10-100 GeV; and variability index. Here we apply four different supervised machine-learning (SML) algorithms (decision trees, random forests, support vector machines, and Mclust Gaussian finite mixture models) to evaluate the classification of BCUs based on the direct observational properties. All four methods can perform exceedingly well with more accuracy and can effectively forecast the classification of Fermi BCUs. The evaluating results show that the results of these methods (SML) are valid and robust, where about one-fourth of sources are flat-spectrum radio quasars (FSRQs) and three-fourths are BL Lacertae (BL Lacs) in 400 BCUs, which are consistent with some other recent results. Although a number of factors influence the accuracy of SML, the results are stable at a fixed ratio 1:3 between FSRQs and BL Lacs, which suggests that the SML can provide an effective method to evaluate the potential classification of BCUs. Among the four methods, Mclust Gaussian Mixture Modeling has the highest accuracy for our training sample (4/5, seed = 123).</description><subject>Accuracy</subject><subject>Active galactic nuclei</subject><subject>Algorithms</subject><subject>Astrophysics</subject><subject>BL Lacertae objects: general</subject><subject>Blazars</subject><subject>Celestial bodies</subject><subject>Classification</subject><subject>Decision trees</subject><subject>Evaluation</subject><subject>Fluctuations</subject><subject>Flux density</subject><subject>gamma rays: galaxies</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>methods: statistical</subject><subject>Model accuracy</subject><subject>Optical properties</subject><subject>Photons</subject><subject>Probabilistic models</subject><subject>Quasars</subject><subject>quasars: general</subject><subject>Radio sources (astronomy)</subject><subject>Spectroscopy</subject><subject>Support vector machines</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LxDAQxYMouK7ePQbEm9V8tE1y1GXXD1b24oK3ME0TN0u3rUlX8L-3paIXPc2bx2_ewEPonJJrLlNxQzMuk5Rn4gYKwiU_QJMf6xBNCCFpknPxeoxOYtwOK1Nqgp7mH1DtofP1G-42Fq_azhuo8KyCGL3rdeebGjcOL2zYeXw3W0e8jgP-DGbja4uXFkLdG6foyEEV7dn3nKL1Yv4ye0iWq_vH2e0yMVySLqGpEiCUMsylhNCCqrx0UORGgqJWlrYUnJSFERygMLzgqldUupwRJkSm-BRdjLltaN73NnZ62-xD3b_UjOeZJJQy0lNkpExoYgzW6Tb4HYRPTYkeGtNDPXqoR4-N9SeX44lv2t9MaLdaCqaZplLptnQ9d_UH92_sF_8Dd7M</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Kang, Shi-Ju</creator><creator>Fan, Jun-Hui</creator><creator>Mao, Weiming</creator><creator>Wu, Qingwen</creator><creator>Feng, Jianchao</creator><creator>Yin, Yue</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9071-5469</orcidid><orcidid>https://orcid.org/0000-0003-4773-4987</orcidid></search><sort><creationdate>20190220</creationdate><title>Evaluating the Optical Classification of Fermi BCUs Using Machine Learning</title><author>Kang, Shi-Ju ; Fan, Jun-Hui ; Mao, Weiming ; Wu, Qingwen ; Feng, Jianchao ; Yin, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1497a799c2f4001b196dfab6c8a91e8ded730dbc73aabc3b3973a18f620277593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Active galactic nuclei</topic><topic>Algorithms</topic><topic>Astrophysics</topic><topic>BL Lacertae objects: general</topic><topic>Blazars</topic><topic>Celestial bodies</topic><topic>Classification</topic><topic>Decision trees</topic><topic>Evaluation</topic><topic>Fluctuations</topic><topic>Flux density</topic><topic>gamma rays: galaxies</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>methods: statistical</topic><topic>Model accuracy</topic><topic>Optical properties</topic><topic>Photons</topic><topic>Probabilistic models</topic><topic>Quasars</topic><topic>quasars: general</topic><topic>Radio sources (astronomy)</topic><topic>Spectroscopy</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Shi-Ju</creatorcontrib><creatorcontrib>Fan, Jun-Hui</creatorcontrib><creatorcontrib>Mao, Weiming</creatorcontrib><creatorcontrib>Wu, Qingwen</creatorcontrib><creatorcontrib>Feng, Jianchao</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Shi-Ju</au><au>Fan, Jun-Hui</au><au>Mao, Weiming</au><au>Wu, Qingwen</au><au>Feng, Jianchao</au><au>Yin, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Optical Classification of Fermi BCUs Using Machine Learning</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>872</volume><issue>2</issue><spage>189</spage><pages>189-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The potential classification of BCUs using machine-learning algorithms is essential. Based on the 3LAC Clean Sample, we collect 1420 Fermi blazars with eight parameters of γ-ray photon spectral index; radio flux; flux density; curve significance; the integral photon flux in 100-300 MeV, 0.3-1 GeV, and 10-100 GeV; and variability index. Here we apply four different supervised machine-learning (SML) algorithms (decision trees, random forests, support vector machines, and Mclust Gaussian finite mixture models) to evaluate the classification of BCUs based on the direct observational properties. All four methods can perform exceedingly well with more accuracy and can effectively forecast the classification of Fermi BCUs. The evaluating results show that the results of these methods (SML) are valid and robust, where about one-fourth of sources are flat-spectrum radio quasars (FSRQs) and three-fourths are BL Lacertae (BL Lacs) in 400 BCUs, which are consistent with some other recent results. Although a number of factors influence the accuracy of SML, the results are stable at a fixed ratio 1:3 between FSRQs and BL Lacs, which suggests that the SML can provide an effective method to evaluate the potential classification of BCUs. Among the four methods, Mclust Gaussian Mixture Modeling has the highest accuracy for our training sample (4/5, seed = 123).</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab0383</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9071-5469</orcidid><orcidid>https://orcid.org/0000-0003-4773-4987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-02, Vol.872 (2), p.189
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ab0383
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Active galactic nuclei
Algorithms
Astrophysics
BL Lacertae objects: general
Blazars
Celestial bodies
Classification
Decision trees
Evaluation
Fluctuations
Flux density
gamma rays: galaxies
Machine learning
Mathematical models
methods: statistical
Model accuracy
Optical properties
Photons
Probabilistic models
Quasars
quasars: general
Radio sources (astronomy)
Spectroscopy
Support vector machines
title Evaluating the Optical Classification of Fermi BCUs Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Optical%20Classification%20of%20Fermi%20BCUs%20Using%20Machine%20Learning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kang,%20Shi-Ju&rft.date=2019-02-20&rft.volume=872&rft.issue=2&rft.spage=189&rft.pages=189-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab0383&rft_dat=%3Cproquest_cross%3E2365801120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365801120&rft_id=info:pmid/&rfr_iscdi=true