Evaluating the Optical Classification of Fermi BCUs Using Machine Learning
In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The pote...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-02, Vol.872 (2), p.189 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 189 |
container_title | The Astrophysical journal |
container_volume | 872 |
creator | Kang, Shi-Ju Fan, Jun-Hui Mao, Weiming Wu, Qingwen Feng, Jianchao Yin, Yue |
description | In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The potential classification of BCUs using machine-learning algorithms is essential. Based on the 3LAC Clean Sample, we collect 1420 Fermi blazars with eight parameters of γ-ray photon spectral index; radio flux; flux density; curve significance; the integral photon flux in 100-300 MeV, 0.3-1 GeV, and 10-100 GeV; and variability index. Here we apply four different supervised machine-learning (SML) algorithms (decision trees, random forests, support vector machines, and Mclust Gaussian finite mixture models) to evaluate the classification of BCUs based on the direct observational properties. All four methods can perform exceedingly well with more accuracy and can effectively forecast the classification of Fermi BCUs. The evaluating results show that the results of these methods (SML) are valid and robust, where about one-fourth of sources are flat-spectrum radio quasars (FSRQs) and three-fourths are BL Lacertae (BL Lacs) in 400 BCUs, which are consistent with some other recent results. Although a number of factors influence the accuracy of SML, the results are stable at a fixed ratio 1:3 between FSRQs and BL Lacs, which suggests that the SML can provide an effective method to evaluate the potential classification of BCUs. Among the four methods, Mclust Gaussian Mixture Modeling has the highest accuracy for our training sample (4/5, seed = 123). |
doi_str_mv | 10.3847/1538-4357/ab0383 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ab0383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365801120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1497a799c2f4001b196dfab6c8a91e8ded730dbc73aabc3b3973a18f620277593</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQbEm9V8tE1y1GXXD1b24oK3ME0TN0u3rUlX8L-3paIXPc2bx2_ewEPonJJrLlNxQzMuk5Rn4gYKwiU_QJMf6xBNCCFpknPxeoxOYtwOK1Nqgp7mH1DtofP1G-42Fq_azhuo8KyCGL3rdeebGjcOL2zYeXw3W0e8jgP-DGbja4uXFkLdG6foyEEV7dn3nKL1Yv4ye0iWq_vH2e0yMVySLqGpEiCUMsylhNCCqrx0UORGgqJWlrYUnJSFERygMLzgqldUupwRJkSm-BRdjLltaN73NnZ62-xD3b_UjOeZJJQy0lNkpExoYgzW6Tb4HYRPTYkeGtNDPXqoR4-N9SeX44lv2t9MaLdaCqaZplLptnQ9d_UH92_sF_8Dd7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365801120</pqid></control><display><type>article</type><title>Evaluating the Optical Classification of Fermi BCUs Using Machine Learning</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kang, Shi-Ju ; Fan, Jun-Hui ; Mao, Weiming ; Wu, Qingwen ; Feng, Jianchao ; Yin, Yue</creator><creatorcontrib>Kang, Shi-Ju ; Fan, Jun-Hui ; Mao, Weiming ; Wu, Qingwen ; Feng, Jianchao ; Yin, Yue</creatorcontrib><description>In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The potential classification of BCUs using machine-learning algorithms is essential. Based on the 3LAC Clean Sample, we collect 1420 Fermi blazars with eight parameters of γ-ray photon spectral index; radio flux; flux density; curve significance; the integral photon flux in 100-300 MeV, 0.3-1 GeV, and 10-100 GeV; and variability index. Here we apply four different supervised machine-learning (SML) algorithms (decision trees, random forests, support vector machines, and Mclust Gaussian finite mixture models) to evaluate the classification of BCUs based on the direct observational properties. All four methods can perform exceedingly well with more accuracy and can effectively forecast the classification of Fermi BCUs. The evaluating results show that the results of these methods (SML) are valid and robust, where about one-fourth of sources are flat-spectrum radio quasars (FSRQs) and three-fourths are BL Lacertae (BL Lacs) in 400 BCUs, which are consistent with some other recent results. Although a number of factors influence the accuracy of SML, the results are stable at a fixed ratio 1:3 between FSRQs and BL Lacs, which suggests that the SML can provide an effective method to evaluate the potential classification of BCUs. Among the four methods, Mclust Gaussian Mixture Modeling has the highest accuracy for our training sample (4/5, seed = 123).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab0383</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accuracy ; Active galactic nuclei ; Algorithms ; Astrophysics ; BL Lacertae objects: general ; Blazars ; Celestial bodies ; Classification ; Decision trees ; Evaluation ; Fluctuations ; Flux density ; gamma rays: galaxies ; Machine learning ; Mathematical models ; methods: statistical ; Model accuracy ; Optical properties ; Photons ; Probabilistic models ; Quasars ; quasars: general ; Radio sources (astronomy) ; Spectroscopy ; Support vector machines</subject><ispartof>The Astrophysical journal, 2019-02, Vol.872 (2), p.189</ispartof><rights>2019. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Feb 20, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1497a799c2f4001b196dfab6c8a91e8ded730dbc73aabc3b3973a18f620277593</citedby><cites>FETCH-LOGICAL-c380t-1497a799c2f4001b196dfab6c8a91e8ded730dbc73aabc3b3973a18f620277593</cites><orcidid>0000-0002-9071-5469 ; 0000-0003-4773-4987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab0383/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids></links><search><creatorcontrib>Kang, Shi-Ju</creatorcontrib><creatorcontrib>Fan, Jun-Hui</creatorcontrib><creatorcontrib>Mao, Weiming</creatorcontrib><creatorcontrib>Wu, Qingwen</creatorcontrib><creatorcontrib>Feng, Jianchao</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><title>Evaluating the Optical Classification of Fermi BCUs Using Machine Learning</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The potential classification of BCUs using machine-learning algorithms is essential. Based on the 3LAC Clean Sample, we collect 1420 Fermi blazars with eight parameters of γ-ray photon spectral index; radio flux; flux density; curve significance; the integral photon flux in 100-300 MeV, 0.3-1 GeV, and 10-100 GeV; and variability index. Here we apply four different supervised machine-learning (SML) algorithms (decision trees, random forests, support vector machines, and Mclust Gaussian finite mixture models) to evaluate the classification of BCUs based on the direct observational properties. All four methods can perform exceedingly well with more accuracy and can effectively forecast the classification of Fermi BCUs. The evaluating results show that the results of these methods (SML) are valid and robust, where about one-fourth of sources are flat-spectrum radio quasars (FSRQs) and three-fourths are BL Lacertae (BL Lacs) in 400 BCUs, which are consistent with some other recent results. Although a number of factors influence the accuracy of SML, the results are stable at a fixed ratio 1:3 between FSRQs and BL Lacs, which suggests that the SML can provide an effective method to evaluate the potential classification of BCUs. Among the four methods, Mclust Gaussian Mixture Modeling has the highest accuracy for our training sample (4/5, seed = 123).</description><subject>Accuracy</subject><subject>Active galactic nuclei</subject><subject>Algorithms</subject><subject>Astrophysics</subject><subject>BL Lacertae objects: general</subject><subject>Blazars</subject><subject>Celestial bodies</subject><subject>Classification</subject><subject>Decision trees</subject><subject>Evaluation</subject><subject>Fluctuations</subject><subject>Flux density</subject><subject>gamma rays: galaxies</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>methods: statistical</subject><subject>Model accuracy</subject><subject>Optical properties</subject><subject>Photons</subject><subject>Probabilistic models</subject><subject>Quasars</subject><subject>quasars: general</subject><subject>Radio sources (astronomy)</subject><subject>Spectroscopy</subject><subject>Support vector machines</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LxDAQxYMouK7ePQbEm9V8tE1y1GXXD1b24oK3ME0TN0u3rUlX8L-3paIXPc2bx2_ewEPonJJrLlNxQzMuk5Rn4gYKwiU_QJMf6xBNCCFpknPxeoxOYtwOK1Nqgp7mH1DtofP1G-42Fq_azhuo8KyCGL3rdeebGjcOL2zYeXw3W0e8jgP-DGbja4uXFkLdG6foyEEV7dn3nKL1Yv4ye0iWq_vH2e0yMVySLqGpEiCUMsylhNCCqrx0UORGgqJWlrYUnJSFERygMLzgqldUupwRJkSm-BRdjLltaN73NnZ62-xD3b_UjOeZJJQy0lNkpExoYgzW6Tb4HYRPTYkeGtNDPXqoR4-N9SeX44lv2t9MaLdaCqaZplLptnQ9d_UH92_sF_8Dd7M</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Kang, Shi-Ju</creator><creator>Fan, Jun-Hui</creator><creator>Mao, Weiming</creator><creator>Wu, Qingwen</creator><creator>Feng, Jianchao</creator><creator>Yin, Yue</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9071-5469</orcidid><orcidid>https://orcid.org/0000-0003-4773-4987</orcidid></search><sort><creationdate>20190220</creationdate><title>Evaluating the Optical Classification of Fermi BCUs Using Machine Learning</title><author>Kang, Shi-Ju ; Fan, Jun-Hui ; Mao, Weiming ; Wu, Qingwen ; Feng, Jianchao ; Yin, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1497a799c2f4001b196dfab6c8a91e8ded730dbc73aabc3b3973a18f620277593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Active galactic nuclei</topic><topic>Algorithms</topic><topic>Astrophysics</topic><topic>BL Lacertae objects: general</topic><topic>Blazars</topic><topic>Celestial bodies</topic><topic>Classification</topic><topic>Decision trees</topic><topic>Evaluation</topic><topic>Fluctuations</topic><topic>Flux density</topic><topic>gamma rays: galaxies</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>methods: statistical</topic><topic>Model accuracy</topic><topic>Optical properties</topic><topic>Photons</topic><topic>Probabilistic models</topic><topic>Quasars</topic><topic>quasars: general</topic><topic>Radio sources (astronomy)</topic><topic>Spectroscopy</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Shi-Ju</creatorcontrib><creatorcontrib>Fan, Jun-Hui</creatorcontrib><creatorcontrib>Mao, Weiming</creatorcontrib><creatorcontrib>Wu, Qingwen</creatorcontrib><creatorcontrib>Feng, Jianchao</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Shi-Ju</au><au>Fan, Jun-Hui</au><au>Mao, Weiming</au><au>Wu, Qingwen</au><au>Feng, Jianchao</au><au>Yin, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Optical Classification of Fermi BCUs Using Machine Learning</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>872</volume><issue>2</issue><spage>189</spage><pages>189-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In the third catalog of active galactic nuclei detected by the Fermi-LAT (3LAC) Clean Sample, there are 402 blazar candidates of uncertain type (BCUs). Due to the limitations of astronomical observation or intrinsic properties, it is difficult to classify blazars using optical spectroscopy. The potential classification of BCUs using machine-learning algorithms is essential. Based on the 3LAC Clean Sample, we collect 1420 Fermi blazars with eight parameters of γ-ray photon spectral index; radio flux; flux density; curve significance; the integral photon flux in 100-300 MeV, 0.3-1 GeV, and 10-100 GeV; and variability index. Here we apply four different supervised machine-learning (SML) algorithms (decision trees, random forests, support vector machines, and Mclust Gaussian finite mixture models) to evaluate the classification of BCUs based on the direct observational properties. All four methods can perform exceedingly well with more accuracy and can effectively forecast the classification of Fermi BCUs. The evaluating results show that the results of these methods (SML) are valid and robust, where about one-fourth of sources are flat-spectrum radio quasars (FSRQs) and three-fourths are BL Lacertae (BL Lacs) in 400 BCUs, which are consistent with some other recent results. Although a number of factors influence the accuracy of SML, the results are stable at a fixed ratio 1:3 between FSRQs and BL Lacs, which suggests that the SML can provide an effective method to evaluate the potential classification of BCUs. Among the four methods, Mclust Gaussian Mixture Modeling has the highest accuracy for our training sample (4/5, seed = 123).</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab0383</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9071-5469</orcidid><orcidid>https://orcid.org/0000-0003-4773-4987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-02, Vol.872 (2), p.189 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ab0383 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Active galactic nuclei Algorithms Astrophysics BL Lacertae objects: general Blazars Celestial bodies Classification Decision trees Evaluation Fluctuations Flux density gamma rays: galaxies Machine learning Mathematical models methods: statistical Model accuracy Optical properties Photons Probabilistic models Quasars quasars: general Radio sources (astronomy) Spectroscopy Support vector machines |
title | Evaluating the Optical Classification of Fermi BCUs Using Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Optical%20Classification%20of%20Fermi%20BCUs%20Using%20Machine%20Learning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kang,%20Shi-Ju&rft.date=2019-02-20&rft.volume=872&rft.issue=2&rft.spage=189&rft.pages=189-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab0383&rft_dat=%3Cproquest_cross%3E2365801120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365801120&rft_id=info:pmid/&rfr_iscdi=true |