Magnetic Fields and the Supply of Low-frequency Acoustic Wave Energy to the Solar Chromosphere

The problem of solar chromospheric heating remains a challenging one with wider implications for stellar physics. Several studies in the recent past have shown that small-scale inclined magnetic field elements channel copious energetic low-frequency acoustic waves, which are normally trapped below t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-02, Vol.871 (2), p.155
Hauptverfasser: Rajaguru, S. P., Sangeetha, C. R., Tripathi, Durgesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 155
container_title The Astrophysical journal
container_volume 871
creator Rajaguru, S. P.
Sangeetha, C. R.
Tripathi, Durgesh
description The problem of solar chromospheric heating remains a challenging one with wider implications for stellar physics. Several studies in the recent past have shown that small-scale inclined magnetic field elements channel copious energetic low-frequency acoustic waves, which are normally trapped below the photosphere. These magnetoacoustic waves are expected to shock at chromospheric heights, contributing to chromospheric heating. In this work, exploiting simultaneous observations of photospheric vector magnetic field, Doppler, continuum, and line-core intensity (of Fe i 6173 ) from the Helioseismic and Magnetic Imager and lower-atmospheric UV emission maps in the 1700 and 1600 channels of the Atmospheric Imaging Assembly, both on board the Solar Dynamics Observatory of NASA, we revisit the relationships between magnetic field properties (inclination and strength) and the propagation of acoustic waves (phase travel time). We find that the flux of acoustic energy, in the 2-5 mHz frequency range, between the upper photosphere and lower chromosphere is in the range of 2.25-2.6 kW m−2, which is about twice the previous estimates. We identify that the relatively less inclined magnetic field elements in the quiet Sun channel a significant amount of waves of frequency lower than the theoretical minimum acoustic cutoff frequency due to magnetic inclination. We also derive indications that these waves steepen and start to dissipate within the height ranges probed, while those let out due to inclined magnetic fields pass through. We explore connections with existing theoretical and numerical results that could explain the origin of these waves.
doi_str_mv 10.3847/1538-4357/aaf883
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aaf883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365943196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-642ac3594d7ae8d21669af277e58585ca503d1566322b293c6b8d421827666a33</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMoWFfvHgNerZuPNkmPS9lVYcWDip4M2TTd7dJtatIq_e9NqehJ5jCT4b034QfAJUY3VCR8jlMq4oSmfK5UKQQ9AtHv6hhECKEkZpS_nYIz7_fjk2RZBN4f1LYxXaXhqjJ14aFqCtjtDHzq27YeoC3h2n7FpTMfvWn0ABfa9n7Uv6pPA5eNcdsBdnby2Fo5mO-cPVjf7owz5-CkVLU3Fz99Bl5Wy-f8Ll4_3t7ni3WsaYq6mCVEhSlLCq6MKAhmLFMl4dykIpRWKaIFThmjhGxIRjXbiCIhWBDOGFOUzsDVlNs6Gz7qO7m3vWvCSUkoC8EUZyyo0KTSznrvTClbVx2UGyRGcqQoR2RyRCYnisFyPVkq2_5l_iv_Bhf4cfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365943196</pqid></control><display><type>article</type><title>Magnetic Fields and the Supply of Low-frequency Acoustic Wave Energy to the Solar Chromosphere</title><source>IOP Publishing Free Content</source><creator>Rajaguru, S. P. ; Sangeetha, C. R. ; Tripathi, Durgesh</creator><creatorcontrib>Rajaguru, S. P. ; Sangeetha, C. R. ; Tripathi, Durgesh</creatorcontrib><description>The problem of solar chromospheric heating remains a challenging one with wider implications for stellar physics. Several studies in the recent past have shown that small-scale inclined magnetic field elements channel copious energetic low-frequency acoustic waves, which are normally trapped below the photosphere. These magnetoacoustic waves are expected to shock at chromospheric heights, contributing to chromospheric heating. In this work, exploiting simultaneous observations of photospheric vector magnetic field, Doppler, continuum, and line-core intensity (of Fe i 6173 ) from the Helioseismic and Magnetic Imager and lower-atmospheric UV emission maps in the 1700 and 1600 channels of the Atmospheric Imaging Assembly, both on board the Solar Dynamics Observatory of NASA, we revisit the relationships between magnetic field properties (inclination and strength) and the propagation of acoustic waves (phase travel time). We find that the flux of acoustic energy, in the 2-5 mHz frequency range, between the upper photosphere and lower chromosphere is in the range of 2.25-2.6 kW m−2, which is about twice the previous estimates. We identify that the relatively less inclined magnetic field elements in the quiet Sun channel a significant amount of waves of frequency lower than the theoretical minimum acoustic cutoff frequency due to magnetic inclination. We also derive indications that these waves steepen and start to dissipate within the height ranges probed, while those let out due to inclined magnetic fields pass through. We explore connections with existing theoretical and numerical results that could explain the origin of these waves.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaf883</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Acoustic propagation ; Acoustic properties ; Acoustic wave propagation ; Acoustic waves ; Acoustics ; Astrophysics ; Chromosphere ; Chromospheric heating ; Energy dissipation ; Frequency ranges ; Heating ; Inclination ; Magnetic field elements ; Magnetic fields ; Magnetic properties ; Magnetoacoustic waves ; Photosphere ; Quiet Sun ; Solar activity ; Solar energy ; Solar observatories ; Stellar physics ; Sun: chromosphere ; Sun: magnetic fields ; Sun: oscillations ; Sun: photosphere ; Travel time ; Wave energy ; Wave power ; Wave propagation</subject><ispartof>The Astrophysical journal, 2019-02, Vol.871 (2), p.155</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 01, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-642ac3594d7ae8d21669af277e58585ca503d1566322b293c6b8d421827666a33</citedby><cites>FETCH-LOGICAL-c350t-642ac3594d7ae8d21669af277e58585ca503d1566322b293c6b8d421827666a33</cites><orcidid>0000-0003-0003-4561 ; 0000-0003-1689-6254 ; 0000-0002-9309-3298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaf883/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,38895,53872</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaf883$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Rajaguru, S. P.</creatorcontrib><creatorcontrib>Sangeetha, C. R.</creatorcontrib><creatorcontrib>Tripathi, Durgesh</creatorcontrib><title>Magnetic Fields and the Supply of Low-frequency Acoustic Wave Energy to the Solar Chromosphere</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The problem of solar chromospheric heating remains a challenging one with wider implications for stellar physics. Several studies in the recent past have shown that small-scale inclined magnetic field elements channel copious energetic low-frequency acoustic waves, which are normally trapped below the photosphere. These magnetoacoustic waves are expected to shock at chromospheric heights, contributing to chromospheric heating. In this work, exploiting simultaneous observations of photospheric vector magnetic field, Doppler, continuum, and line-core intensity (of Fe i 6173 ) from the Helioseismic and Magnetic Imager and lower-atmospheric UV emission maps in the 1700 and 1600 channels of the Atmospheric Imaging Assembly, both on board the Solar Dynamics Observatory of NASA, we revisit the relationships between magnetic field properties (inclination and strength) and the propagation of acoustic waves (phase travel time). We find that the flux of acoustic energy, in the 2-5 mHz frequency range, between the upper photosphere and lower chromosphere is in the range of 2.25-2.6 kW m−2, which is about twice the previous estimates. We identify that the relatively less inclined magnetic field elements in the quiet Sun channel a significant amount of waves of frequency lower than the theoretical minimum acoustic cutoff frequency due to magnetic inclination. We also derive indications that these waves steepen and start to dissipate within the height ranges probed, while those let out due to inclined magnetic fields pass through. We explore connections with existing theoretical and numerical results that could explain the origin of these waves.</description><subject>Acoustic propagation</subject><subject>Acoustic properties</subject><subject>Acoustic wave propagation</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Astrophysics</subject><subject>Chromosphere</subject><subject>Chromospheric heating</subject><subject>Energy dissipation</subject><subject>Frequency ranges</subject><subject>Heating</subject><subject>Inclination</subject><subject>Magnetic field elements</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetoacoustic waves</subject><subject>Photosphere</subject><subject>Quiet Sun</subject><subject>Solar activity</subject><subject>Solar energy</subject><subject>Solar observatories</subject><subject>Stellar physics</subject><subject>Sun: chromosphere</subject><subject>Sun: magnetic fields</subject><subject>Sun: oscillations</subject><subject>Sun: photosphere</subject><subject>Travel time</subject><subject>Wave energy</subject><subject>Wave power</subject><subject>Wave propagation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMoWFfvHgNerZuPNkmPS9lVYcWDip4M2TTd7dJtatIq_e9NqehJ5jCT4b034QfAJUY3VCR8jlMq4oSmfK5UKQQ9AtHv6hhECKEkZpS_nYIz7_fjk2RZBN4f1LYxXaXhqjJ14aFqCtjtDHzq27YeoC3h2n7FpTMfvWn0ABfa9n7Uv6pPA5eNcdsBdnby2Fo5mO-cPVjf7owz5-CkVLU3Fz99Bl5Wy-f8Ll4_3t7ni3WsaYq6mCVEhSlLCq6MKAhmLFMl4dykIpRWKaIFThmjhGxIRjXbiCIhWBDOGFOUzsDVlNs6Gz7qO7m3vWvCSUkoC8EUZyyo0KTSznrvTClbVx2UGyRGcqQoR2RyRCYnisFyPVkq2_5l_iv_Bhf4cfU</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Rajaguru, S. P.</creator><creator>Sangeetha, C. R.</creator><creator>Tripathi, Durgesh</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0003-4561</orcidid><orcidid>https://orcid.org/0000-0003-1689-6254</orcidid><orcidid>https://orcid.org/0000-0002-9309-3298</orcidid></search><sort><creationdate>20190201</creationdate><title>Magnetic Fields and the Supply of Low-frequency Acoustic Wave Energy to the Solar Chromosphere</title><author>Rajaguru, S. P. ; Sangeetha, C. R. ; Tripathi, Durgesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-642ac3594d7ae8d21669af277e58585ca503d1566322b293c6b8d421827666a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic propagation</topic><topic>Acoustic properties</topic><topic>Acoustic wave propagation</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Astrophysics</topic><topic>Chromosphere</topic><topic>Chromospheric heating</topic><topic>Energy dissipation</topic><topic>Frequency ranges</topic><topic>Heating</topic><topic>Inclination</topic><topic>Magnetic field elements</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetoacoustic waves</topic><topic>Photosphere</topic><topic>Quiet Sun</topic><topic>Solar activity</topic><topic>Solar energy</topic><topic>Solar observatories</topic><topic>Stellar physics</topic><topic>Sun: chromosphere</topic><topic>Sun: magnetic fields</topic><topic>Sun: oscillations</topic><topic>Sun: photosphere</topic><topic>Travel time</topic><topic>Wave energy</topic><topic>Wave power</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaguru, S. P.</creatorcontrib><creatorcontrib>Sangeetha, C. R.</creatorcontrib><creatorcontrib>Tripathi, Durgesh</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajaguru, S. P.</au><au>Sangeetha, C. R.</au><au>Tripathi, Durgesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Fields and the Supply of Low-frequency Acoustic Wave Energy to the Solar Chromosphere</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>871</volume><issue>2</issue><spage>155</spage><pages>155-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The problem of solar chromospheric heating remains a challenging one with wider implications for stellar physics. Several studies in the recent past have shown that small-scale inclined magnetic field elements channel copious energetic low-frequency acoustic waves, which are normally trapped below the photosphere. These magnetoacoustic waves are expected to shock at chromospheric heights, contributing to chromospheric heating. In this work, exploiting simultaneous observations of photospheric vector magnetic field, Doppler, continuum, and line-core intensity (of Fe i 6173 ) from the Helioseismic and Magnetic Imager and lower-atmospheric UV emission maps in the 1700 and 1600 channels of the Atmospheric Imaging Assembly, both on board the Solar Dynamics Observatory of NASA, we revisit the relationships between magnetic field properties (inclination and strength) and the propagation of acoustic waves (phase travel time). We find that the flux of acoustic energy, in the 2-5 mHz frequency range, between the upper photosphere and lower chromosphere is in the range of 2.25-2.6 kW m−2, which is about twice the previous estimates. We identify that the relatively less inclined magnetic field elements in the quiet Sun channel a significant amount of waves of frequency lower than the theoretical minimum acoustic cutoff frequency due to magnetic inclination. We also derive indications that these waves steepen and start to dissipate within the height ranges probed, while those let out due to inclined magnetic fields pass through. We explore connections with existing theoretical and numerical results that could explain the origin of these waves.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaf883</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0003-4561</orcidid><orcidid>https://orcid.org/0000-0003-1689-6254</orcidid><orcidid>https://orcid.org/0000-0002-9309-3298</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-02, Vol.871 (2), p.155
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_aaf883
source IOP Publishing Free Content
subjects Acoustic propagation
Acoustic properties
Acoustic wave propagation
Acoustic waves
Acoustics
Astrophysics
Chromosphere
Chromospheric heating
Energy dissipation
Frequency ranges
Heating
Inclination
Magnetic field elements
Magnetic fields
Magnetic properties
Magnetoacoustic waves
Photosphere
Quiet Sun
Solar activity
Solar energy
Solar observatories
Stellar physics
Sun: chromosphere
Sun: magnetic fields
Sun: oscillations
Sun: photosphere
Travel time
Wave energy
Wave power
Wave propagation
title Magnetic Fields and the Supply of Low-frequency Acoustic Wave Energy to the Solar Chromosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Fields%20and%20the%20Supply%20of%20Low-frequency%20Acoustic%20Wave%20Energy%20to%20the%20Solar%20Chromosphere&rft.jtitle=The%20Astrophysical%20journal&rft.au=Rajaguru,%20S.%20P.&rft.date=2019-02-01&rft.volume=871&rft.issue=2&rft.spage=155&rft.pages=155-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaf883&rft_dat=%3Cproquest_O3W%3E2365943196%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365943196&rft_id=info:pmid/&rfr_iscdi=true