The Turbulent Cascade for High Cross-helicity States at 1 au. II. Minor Energy

The application of third moments to turbulence can determine the rate of the energy cascade. This approach is most readily done for statistically homogeneous turbulence in a uniform incompressible medium. Solar wind conditions near 1 au appear to fulfill these requirements sufficiently well to demon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-11, Vol.867 (2), p.156
Hauptverfasser: Vasquez, Bernard J., Forman, M. A., Coburn, J. T., Smith, C. W., Stawarz, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 156
container_title The Astrophysical journal
container_volume 867
creator Vasquez, Bernard J.
Forman, M. A.
Coburn, J. T.
Smith, C. W.
Stawarz, J. E.
description The application of third moments to turbulence can determine the rate of the energy cascade. This approach is most readily done for statistically homogeneous turbulence in a uniform incompressible medium. Solar wind conditions near 1 au appear to fulfill these requirements sufficiently well to demonstrate that an energy cascade is active among interplanetary fluctuations with a rate sufficient for the inferred amount of proton heating. Fluctuation and solar-wind parameter ranges have been found where average cascade rates are calculated to have negative values that correspond to back-transfer of energy implying no proton heating. Additionally, individual outward and inward pseudo-energy cascade rates are anti-correlated rather than correlated, as they are for a power spectral cascade rate prediction. These negative rates and behaviors are shown here to be organized by inward pseudo-energy, which is generally the minor component of energy, and they occur below a threshold of inward pseudo-energy per unit mass of about 800 km2 s−2 for 12 hr intervals. Inward pseudo-energy is also shown to correlate with ambient solar-wind intervals that have decreasing wind speed and so correspond to rarefactions. These results imply that the average negative cascade rates may be the outcome of effects that are significant enough in these rarefactions to require a third-moment analysis that includes the effects of a nonuniform medium, principally flow gradients.
doi_str_mv 10.3847/1538-4357/aae6c6
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aae6c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365962416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a0ce2bf53b7070c378ac2cb89e0a11a8b5bc5edbf50dd7aa66c8ec72b914cc183</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwHxZrf8aJP0KGW6wdSDE7yFL2m6dcy2Ju1h_70tFb3oKXzhed-P70HompIZV7Gc04SrKOaJnAM4YcUJmvx8naIJISSOBJfv5-gihP0wsjSdoOfNzuFN5013cFWLMwgWcoeL2uNlud3hzNchRDt3KG3ZHvFrC60LGFpMMXQzvFrN8FNZ9fSicn57vERnBRyCu_p-p-jtYbHJltH65XGV3a8jyxVpIyDWMVMk3EgiieVSgWXWqNQRoBSUSYxNXN4TJM8lgBBWOSuZSWlsLVV8im7G3sbXn50Lrd7Xna_6lZpxkaSCxVT0FBkpO1zhXaEbX36AP2pK9GBND4r0oEiP1vrI7Rgp6-a3E5q9VkJq1geEbvKi5-7-4P6t_QJrpHpO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365962416</pqid></control><display><type>article</type><title>The Turbulent Cascade for High Cross-helicity States at 1 au. II. Minor Energy</title><source>IOP Publishing Free Content</source><creator>Vasquez, Bernard J. ; Forman, M. A. ; Coburn, J. T. ; Smith, C. W. ; Stawarz, J. E.</creator><creatorcontrib>Vasquez, Bernard J. ; Forman, M. A. ; Coburn, J. T. ; Smith, C. W. ; Stawarz, J. E.</creatorcontrib><description>The application of third moments to turbulence can determine the rate of the energy cascade. This approach is most readily done for statistically homogeneous turbulence in a uniform incompressible medium. Solar wind conditions near 1 au appear to fulfill these requirements sufficiently well to demonstrate that an energy cascade is active among interplanetary fluctuations with a rate sufficient for the inferred amount of proton heating. Fluctuation and solar-wind parameter ranges have been found where average cascade rates are calculated to have negative values that correspond to back-transfer of energy implying no proton heating. Additionally, individual outward and inward pseudo-energy cascade rates are anti-correlated rather than correlated, as they are for a power spectral cascade rate prediction. These negative rates and behaviors are shown here to be organized by inward pseudo-energy, which is generally the minor component of energy, and they occur below a threshold of inward pseudo-energy per unit mass of about 800 km2 s−2 for 12 hr intervals. Inward pseudo-energy is also shown to correlate with ambient solar-wind intervals that have decreasing wind speed and so correspond to rarefactions. These results imply that the average negative cascade rates may be the outcome of effects that are significant enough in these rarefactions to require a third-moment analysis that includes the effects of a nonuniform medium, principally flow gradients.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aae6c6</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Correlation ; Energy ; Fluid dynamics ; Heating ; Helicity ; Homogeneous turbulence ; Intervals ; plasmas ; Protons ; Solar wind ; Turbulence ; Variation ; Wind speed</subject><ispartof>The Astrophysical journal, 2018-11, Vol.867 (2), p.156</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a0ce2bf53b7070c378ac2cb89e0a11a8b5bc5edbf50dd7aa66c8ec72b914cc183</citedby><cites>FETCH-LOGICAL-c380t-a0ce2bf53b7070c378ac2cb89e0a11a8b5bc5edbf50dd7aa66c8ec72b914cc183</cites><orcidid>0000-0002-5379-1542 ; 0000-0001-8593-7289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aae6c6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aae6c6$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Vasquez, Bernard J.</creatorcontrib><creatorcontrib>Forman, M. A.</creatorcontrib><creatorcontrib>Coburn, J. T.</creatorcontrib><creatorcontrib>Smith, C. W.</creatorcontrib><creatorcontrib>Stawarz, J. E.</creatorcontrib><title>The Turbulent Cascade for High Cross-helicity States at 1 au. II. Minor Energy</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The application of third moments to turbulence can determine the rate of the energy cascade. This approach is most readily done for statistically homogeneous turbulence in a uniform incompressible medium. Solar wind conditions near 1 au appear to fulfill these requirements sufficiently well to demonstrate that an energy cascade is active among interplanetary fluctuations with a rate sufficient for the inferred amount of proton heating. Fluctuation and solar-wind parameter ranges have been found where average cascade rates are calculated to have negative values that correspond to back-transfer of energy implying no proton heating. Additionally, individual outward and inward pseudo-energy cascade rates are anti-correlated rather than correlated, as they are for a power spectral cascade rate prediction. These negative rates and behaviors are shown here to be organized by inward pseudo-energy, which is generally the minor component of energy, and they occur below a threshold of inward pseudo-energy per unit mass of about 800 km2 s−2 for 12 hr intervals. Inward pseudo-energy is also shown to correlate with ambient solar-wind intervals that have decreasing wind speed and so correspond to rarefactions. These results imply that the average negative cascade rates may be the outcome of effects that are significant enough in these rarefactions to require a third-moment analysis that includes the effects of a nonuniform medium, principally flow gradients.</description><subject>Astrophysics</subject><subject>Correlation</subject><subject>Energy</subject><subject>Fluid dynamics</subject><subject>Heating</subject><subject>Helicity</subject><subject>Homogeneous turbulence</subject><subject>Intervals</subject><subject>plasmas</subject><subject>Protons</subject><subject>Solar wind</subject><subject>Turbulence</subject><subject>Variation</subject><subject>Wind speed</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3jwHxZrf8aJP0KGW6wdSDE7yFL2m6dcy2Ju1h_70tFb3oKXzhed-P70HompIZV7Gc04SrKOaJnAM4YcUJmvx8naIJISSOBJfv5-gihP0wsjSdoOfNzuFN5013cFWLMwgWcoeL2uNlud3hzNchRDt3KG3ZHvFrC60LGFpMMXQzvFrN8FNZ9fSicn57vERnBRyCu_p-p-jtYbHJltH65XGV3a8jyxVpIyDWMVMk3EgiieVSgWXWqNQRoBSUSYxNXN4TJM8lgBBWOSuZSWlsLVV8im7G3sbXn50Lrd7Xna_6lZpxkaSCxVT0FBkpO1zhXaEbX36AP2pK9GBND4r0oEiP1vrI7Rgp6-a3E5q9VkJq1geEbvKi5-7-4P6t_QJrpHpO</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Vasquez, Bernard J.</creator><creator>Forman, M. A.</creator><creator>Coburn, J. T.</creator><creator>Smith, C. W.</creator><creator>Stawarz, J. E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5379-1542</orcidid><orcidid>https://orcid.org/0000-0001-8593-7289</orcidid></search><sort><creationdate>20181110</creationdate><title>The Turbulent Cascade for High Cross-helicity States at 1 au. II. Minor Energy</title><author>Vasquez, Bernard J. ; Forman, M. A. ; Coburn, J. T. ; Smith, C. W. ; Stawarz, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a0ce2bf53b7070c378ac2cb89e0a11a8b5bc5edbf50dd7aa66c8ec72b914cc183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Correlation</topic><topic>Energy</topic><topic>Fluid dynamics</topic><topic>Heating</topic><topic>Helicity</topic><topic>Homogeneous turbulence</topic><topic>Intervals</topic><topic>plasmas</topic><topic>Protons</topic><topic>Solar wind</topic><topic>Turbulence</topic><topic>Variation</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasquez, Bernard J.</creatorcontrib><creatorcontrib>Forman, M. A.</creatorcontrib><creatorcontrib>Coburn, J. T.</creatorcontrib><creatorcontrib>Smith, C. W.</creatorcontrib><creatorcontrib>Stawarz, J. E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vasquez, Bernard J.</au><au>Forman, M. A.</au><au>Coburn, J. T.</au><au>Smith, C. W.</au><au>Stawarz, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Turbulent Cascade for High Cross-helicity States at 1 au. II. Minor Energy</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-11-10</date><risdate>2018</risdate><volume>867</volume><issue>2</issue><spage>156</spage><pages>156-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The application of third moments to turbulence can determine the rate of the energy cascade. This approach is most readily done for statistically homogeneous turbulence in a uniform incompressible medium. Solar wind conditions near 1 au appear to fulfill these requirements sufficiently well to demonstrate that an energy cascade is active among interplanetary fluctuations with a rate sufficient for the inferred amount of proton heating. Fluctuation and solar-wind parameter ranges have been found where average cascade rates are calculated to have negative values that correspond to back-transfer of energy implying no proton heating. Additionally, individual outward and inward pseudo-energy cascade rates are anti-correlated rather than correlated, as they are for a power spectral cascade rate prediction. These negative rates and behaviors are shown here to be organized by inward pseudo-energy, which is generally the minor component of energy, and they occur below a threshold of inward pseudo-energy per unit mass of about 800 km2 s−2 for 12 hr intervals. Inward pseudo-energy is also shown to correlate with ambient solar-wind intervals that have decreasing wind speed and so correspond to rarefactions. These results imply that the average negative cascade rates may be the outcome of effects that are significant enough in these rarefactions to require a third-moment analysis that includes the effects of a nonuniform medium, principally flow gradients.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aae6c6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5379-1542</orcidid><orcidid>https://orcid.org/0000-0001-8593-7289</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-11, Vol.867 (2), p.156
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_aae6c6
source IOP Publishing Free Content
subjects Astrophysics
Correlation
Energy
Fluid dynamics
Heating
Helicity
Homogeneous turbulence
Intervals
plasmas
Protons
Solar wind
Turbulence
Variation
Wind speed
title The Turbulent Cascade for High Cross-helicity States at 1 au. II. Minor Energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Turbulent%20Cascade%20for%20High%20Cross-helicity%20States%20at%201%20au.%20II.%20Minor%20Energy&rft.jtitle=The%20Astrophysical%20journal&rft.au=Vasquez,%20Bernard%20J.&rft.date=2018-11-10&rft.volume=867&rft.issue=2&rft.spage=156&rft.pages=156-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aae6c6&rft_dat=%3Cproquest_O3W%3E2365962416%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365962416&rft_id=info:pmid/&rfr_iscdi=true