Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation
We investigate axisymmetric black hole (BH) formation and its gravitational wave (GW) and neutrino signals with self-consistent core-collapse supernova simulations of a non-rotating 40 M progenitor star using the isotropic diffusion source approximation for the neutrino transport and a modified grav...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-04, Vol.857 (1), p.13 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | The Astrophysical journal |
container_volume | 857 |
creator | Pan, Kuo-Chuan Liebendörfer, Matthias Couch, Sean M. Thielemann, Friedrich-Karl |
description | We investigate axisymmetric black hole (BH) formation and its gravitational wave (GW) and neutrino signals with self-consistent core-collapse supernova simulations of a non-rotating 40 M progenitor star using the isotropic diffusion source approximation for the neutrino transport and a modified gravitational potential for general relativistic effects. We consider four different neutron star (NS) equations of state (EoS): LS220, SFHo, BHBΛφ, and DD2, and study the impact of the EoS on BH formation dynamics and GW emission. We find that the BH formation time is sensitive to the EoS from 460 to >1300 ms and is delayed in multiple dimensions for ∼100-250 ms due to the finite entropy effects. Depending on the EoS, our simulations show the possibility that shock revival can occur along with the collapse of the proto-neutron star (PNS) to a BH. The gravitational waveforms contain four major features that are similar to previous studies but show extreme values: (1) a low-frequency signal (∼300-500 Hz) from core-bounce and prompt convection, (2) a strong signal from the PNS g-mode oscillation among other features, (3) a high-frequency signal from the PNS inner-core convection, and (4) signals from the standing accretion shock instability and convection. The peak frequency at the onset of BH formation reaches to ∼2.3 kHz. The characteristic amplitude of a 10 kpc object at peak frequency is detectable but close to the noise threshold of the Advanced LIGO and KAGRA, suggesting that the next-generation GW detector will need to improve the sensitivity at the kHz domain to better observe stellar-mass BH formation from core-collapse supernovae or failed supernovae. |
doi_str_mv | 10.3847/1538-4357/aab71d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aab71d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365888637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-a165ca520679e51e26ad5c27e259a58e42fcd93dd028ef33bb72d0252d5824503</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsujp7SAkoAfceKUvEECUQASneW1J0uWxA62t-DvSQiCBlGNxzr3SnMQ2qPkmMu8PKGCyyznojzRel5Su4ZmP1_raEYIybOCly-baCvG5biyqpqhxeX7SqfGO-xr_Jh0AnwBPTgLLuGLD6e7xkSsncX3qzY1WQcxgltAwI_Nwuk24jr4bkhC2-qQdTpGfNZq84ZvfAv4yofuq34HbdQDDbvfcxs9X10-nd9kdw_Xt-end5nJS5YyTQthtGCkKCsQFFihrTCsBCYqLSTkrDa24tYSJqHmfD4v2fAWzArJckH4Ntqfen1MjYqmSWBejXcOTFJUECp5NUAHE9QH_76CmNTSr8J4jWK8EFLKwdRAkYkywccYoFZ9aDodPhQlanSuRsFqFKwm50PkaIo0vv_t_Ac__APX_VLJAaKKctXbmn8CLzWPFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365888637</pqid></control><display><type>article</type><title>Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Pan, Kuo-Chuan ; Liebendörfer, Matthias ; Couch, Sean M. ; Thielemann, Friedrich-Karl</creator><creatorcontrib>Pan, Kuo-Chuan ; Liebendörfer, Matthias ; Couch, Sean M. ; Thielemann, Friedrich-Karl ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>We investigate axisymmetric black hole (BH) formation and its gravitational wave (GW) and neutrino signals with self-consistent core-collapse supernova simulations of a non-rotating 40 M progenitor star using the isotropic diffusion source approximation for the neutrino transport and a modified gravitational potential for general relativistic effects. We consider four different neutron star (NS) equations of state (EoS): LS220, SFHo, BHBΛφ, and DD2, and study the impact of the EoS on BH formation dynamics and GW emission. We find that the BH formation time is sensitive to the EoS from 460 to >1300 ms and is delayed in multiple dimensions for ∼100-250 ms due to the finite entropy effects. Depending on the EoS, our simulations show the possibility that shock revival can occur along with the collapse of the proto-neutron star (PNS) to a BH. The gravitational waveforms contain four major features that are similar to previous studies but show extreme values: (1) a low-frequency signal (∼300-500 Hz) from core-bounce and prompt convection, (2) a strong signal from the PNS g-mode oscillation among other features, (3) a high-frequency signal from the PNS inner-core convection, and (4) signals from the standing accretion shock instability and convection. The peak frequency at the onset of BH formation reaches to ∼2.3 kHz. The characteristic amplitude of a 10 kpc object at peak frequency is detectable but close to the noise threshold of the Advanced LIGO and KAGRA, suggesting that the next-generation GW detector will need to improve the sensitivity at the kHz domain to better observe stellar-mass BH formation from core-collapse supernovae or failed supernovae.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aab71d</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; black hole ; Black holes ; Convection ; Deposition ; Entropy ; Equations of state ; Extreme values ; Gravitational collapse ; Gravitational waves ; hydrodynamics ; instabilities ; Neutrinos ; Neutron stars ; Noise threshold ; Peak frequency ; Relativistic effects ; Stars ; stars: black hole ; Stellar rotation ; Supernova ; Supernovae ; supernovae: general ; Waveforms</subject><ispartof>The Astrophysical journal, 2018-04, Vol.857 (1), p.13</ispartof><rights>2018. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Apr 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-a165ca520679e51e26ad5c27e259a58e42fcd93dd028ef33bb72d0252d5824503</citedby><cites>FETCH-LOGICAL-c472t-a165ca520679e51e26ad5c27e259a58e42fcd93dd028ef33bb72d0252d5824503</cites><orcidid>0000-0002-5080-5996 ; 0000-0002-1473-9880 ; 0000000250805996 ; 0000000214739880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab71d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1501839$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Kuo-Chuan</creatorcontrib><creatorcontrib>Liebendörfer, Matthias</creatorcontrib><creatorcontrib>Couch, Sean M.</creatorcontrib><creatorcontrib>Thielemann, Friedrich-Karl</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate axisymmetric black hole (BH) formation and its gravitational wave (GW) and neutrino signals with self-consistent core-collapse supernova simulations of a non-rotating 40 M progenitor star using the isotropic diffusion source approximation for the neutrino transport and a modified gravitational potential for general relativistic effects. We consider four different neutron star (NS) equations of state (EoS): LS220, SFHo, BHBΛφ, and DD2, and study the impact of the EoS on BH formation dynamics and GW emission. We find that the BH formation time is sensitive to the EoS from 460 to >1300 ms and is delayed in multiple dimensions for ∼100-250 ms due to the finite entropy effects. Depending on the EoS, our simulations show the possibility that shock revival can occur along with the collapse of the proto-neutron star (PNS) to a BH. The gravitational waveforms contain four major features that are similar to previous studies but show extreme values: (1) a low-frequency signal (∼300-500 Hz) from core-bounce and prompt convection, (2) a strong signal from the PNS g-mode oscillation among other features, (3) a high-frequency signal from the PNS inner-core convection, and (4) signals from the standing accretion shock instability and convection. The peak frequency at the onset of BH formation reaches to ∼2.3 kHz. The characteristic amplitude of a 10 kpc object at peak frequency is detectable but close to the noise threshold of the Advanced LIGO and KAGRA, suggesting that the next-generation GW detector will need to improve the sensitivity at the kHz domain to better observe stellar-mass BH formation from core-collapse supernovae or failed supernovae.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>black hole</subject><subject>Black holes</subject><subject>Convection</subject><subject>Deposition</subject><subject>Entropy</subject><subject>Equations of state</subject><subject>Extreme values</subject><subject>Gravitational collapse</subject><subject>Gravitational waves</subject><subject>hydrodynamics</subject><subject>instabilities</subject><subject>Neutrinos</subject><subject>Neutron stars</subject><subject>Noise threshold</subject><subject>Peak frequency</subject><subject>Relativistic effects</subject><subject>Stars</subject><subject>stars: black hole</subject><subject>Stellar rotation</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>supernovae: general</subject><subject>Waveforms</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kLtOxDAQRS0EEsujp7SAkoAfceKUvEECUQASneW1J0uWxA62t-DvSQiCBlGNxzr3SnMQ2qPkmMu8PKGCyyznojzRel5Su4ZmP1_raEYIybOCly-baCvG5biyqpqhxeX7SqfGO-xr_Jh0AnwBPTgLLuGLD6e7xkSsncX3qzY1WQcxgltAwI_Nwuk24jr4bkhC2-qQdTpGfNZq84ZvfAv4yofuq34HbdQDDbvfcxs9X10-nd9kdw_Xt-end5nJS5YyTQthtGCkKCsQFFihrTCsBCYqLSTkrDa24tYSJqHmfD4v2fAWzArJckH4Ntqfen1MjYqmSWBejXcOTFJUECp5NUAHE9QH_76CmNTSr8J4jWK8EFLKwdRAkYkywccYoFZ9aDodPhQlanSuRsFqFKwm50PkaIo0vv_t_Ac__APX_VLJAaKKctXbmn8CLzWPFA</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Pan, Kuo-Chuan</creator><creator>Liebendörfer, Matthias</creator><creator>Couch, Sean M.</creator><creator>Thielemann, Friedrich-Karl</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5080-5996</orcidid><orcidid>https://orcid.org/0000-0002-1473-9880</orcidid><orcidid>https://orcid.org/0000000250805996</orcidid><orcidid>https://orcid.org/0000000214739880</orcidid></search><sort><creationdate>20180410</creationdate><title>Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation</title><author>Pan, Kuo-Chuan ; Liebendörfer, Matthias ; Couch, Sean M. ; Thielemann, Friedrich-Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-a165ca520679e51e26ad5c27e259a58e42fcd93dd028ef33bb72d0252d5824503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>black hole</topic><topic>Black holes</topic><topic>Convection</topic><topic>Deposition</topic><topic>Entropy</topic><topic>Equations of state</topic><topic>Extreme values</topic><topic>Gravitational collapse</topic><topic>Gravitational waves</topic><topic>hydrodynamics</topic><topic>instabilities</topic><topic>Neutrinos</topic><topic>Neutron stars</topic><topic>Noise threshold</topic><topic>Peak frequency</topic><topic>Relativistic effects</topic><topic>Stars</topic><topic>stars: black hole</topic><topic>Stellar rotation</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>supernovae: general</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Kuo-Chuan</creatorcontrib><creatorcontrib>Liebendörfer, Matthias</creatorcontrib><creatorcontrib>Couch, Sean M.</creatorcontrib><creatorcontrib>Thielemann, Friedrich-Karl</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Kuo-Chuan</au><au>Liebendörfer, Matthias</au><au>Couch, Sean M.</au><au>Thielemann, Friedrich-Karl</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>857</volume><issue>1</issue><spage>13</spage><pages>13-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>We investigate axisymmetric black hole (BH) formation and its gravitational wave (GW) and neutrino signals with self-consistent core-collapse supernova simulations of a non-rotating 40 M progenitor star using the isotropic diffusion source approximation for the neutrino transport and a modified gravitational potential for general relativistic effects. We consider four different neutron star (NS) equations of state (EoS): LS220, SFHo, BHBΛφ, and DD2, and study the impact of the EoS on BH formation dynamics and GW emission. We find that the BH formation time is sensitive to the EoS from 460 to >1300 ms and is delayed in multiple dimensions for ∼100-250 ms due to the finite entropy effects. Depending on the EoS, our simulations show the possibility that shock revival can occur along with the collapse of the proto-neutron star (PNS) to a BH. The gravitational waveforms contain four major features that are similar to previous studies but show extreme values: (1) a low-frequency signal (∼300-500 Hz) from core-bounce and prompt convection, (2) a strong signal from the PNS g-mode oscillation among other features, (3) a high-frequency signal from the PNS inner-core convection, and (4) signals from the standing accretion shock instability and convection. The peak frequency at the onset of BH formation reaches to ∼2.3 kHz. The characteristic amplitude of a 10 kpc object at peak frequency is detectable but close to the noise threshold of the Advanced LIGO and KAGRA, suggesting that the next-generation GW detector will need to improve the sensitivity at the kHz domain to better observe stellar-mass BH formation from core-collapse supernovae or failed supernovae.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aab71d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5080-5996</orcidid><orcidid>https://orcid.org/0000-0002-1473-9880</orcidid><orcidid>https://orcid.org/0000000250805996</orcidid><orcidid>https://orcid.org/0000000214739880</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-04, Vol.857 (1), p.13 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_aab71d |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | ASTRONOMY AND ASTROPHYSICS Astrophysics black hole Black holes Convection Deposition Entropy Equations of state Extreme values Gravitational collapse Gravitational waves hydrodynamics instabilities Neutrinos Neutron stars Noise threshold Peak frequency Relativistic effects Stars stars: black hole Stellar rotation Supernova Supernovae supernovae: general Waveforms |
title | Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equation%20of%20State%20Dependent%20Dynamics%20and%20Multi-messenger%20Signals%20from%20Stellar-mass%20Black%20Hole%20Formation&rft.jtitle=The%20Astrophysical%20journal&rft.au=Pan,%20Kuo-Chuan&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2018-04-10&rft.volume=857&rft.issue=1&rft.spage=13&rft.pages=13-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aab71d&rft_dat=%3Cproquest_cross%3E2365888637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365888637&rft_id=info:pmid/&rfr_iscdi=true |