The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales
We use magnetic field and ion moment data from the MFI and SWE instruments on board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.4 Hz during 2012 using an automated routine,...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-03, Vol.856 (1), p.49 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | The Astrophysical journal |
container_volume | 856 |
creator | Woodham, Lloyd D. Wicks, Robert T. Verscharen, Daniel Owen, Christopher J. |
description | We use magnetic field and ion moment data from the MFI and SWE instruments on board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.4 Hz during 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI "noise-floor" using tail-lobe crossings of the Earth's magnetosphere during early 2004. We utilize Taylor's hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton cyclotron resonance scale, 1/kc, rather than the proton inertial length, di, or proton gyroscale, i. This agreement is strongest when we consider periods where , and is consistent with a spectral break at di for and at i for . We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/kc, and its absolute value reaches a maximum at i. These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms. |
doi_str_mv | 10.3847/1538-4357/aab03d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aab03d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365932411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-f644abbbcf12dc097b5c9af75b0b137d258f2b70ab96f395024d0a4ac33d25df3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMLOaImVUCd2koYNlVelIlBbBFt0dmzVJbWDnQz9AfxvHAXBxHR33-ukD6HzmFzRKcsncUqnEaNpPgHghFYHaPQLHaIRIYRFGc3fj9GJ99v-TIpihL7WG4mXtpbYKvzibGsNnu1FbVsXtqX01oAREoPHgG-197qBVgfqSYoNGO13WBu8sjU4_KZNhded410tg-ca3-BVG9S-1QLqsHfVHkOL59ZEH9rIAONVYKQ_RUcKai_PfuYYvd7frWeP0eL5YT67WUSCxVkbqYwx4JwLFSeVIEXOU1GAylNOeEzzKkmnKuE5AV5kihYpSVhFgIGgNHCVomN0MeQ2zn520rfl1nbOhJdlQrO0oAmL46Aig0o4672Tqmyc3oHblzEp-7LLvtmyb7Ycyg6Wy8GibfOX-a_8G8BZggg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365932411</pqid></control><display><type>article</type><title>The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Woodham, Lloyd D. ; Wicks, Robert T. ; Verscharen, Daniel ; Owen, Christopher J.</creator><creatorcontrib>Woodham, Lloyd D. ; Wicks, Robert T. ; Verscharen, Daniel ; Owen, Christopher J.</creatorcontrib><description>We use magnetic field and ion moment data from the MFI and SWE instruments on board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.4 Hz during 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI "noise-floor" using tail-lobe crossings of the Earth's magnetosphere during early 2004. We utilize Taylor's hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton cyclotron resonance scale, 1/kc, rather than the proton inertial length, di, or proton gyroscale, i. This agreement is strongest when we consider periods where , and is consistent with a spectral break at di for and at i for . We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/kc, and its absolute value reaches a maximum at i. These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aab03d</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cyclotron resonance ; Doppler effect ; Earth magnetosphere ; Energy dissipation ; Helicity ; Magnetic fields ; Magnetic properties ; Noise measurement ; plasmas ; Protons ; Resonance ; Solar energy ; Solar wind ; Solar wind turbulence ; Spacecraft ; Spectra ; Sun: heliosphere ; Turbulence ; Turbulent energy ; Variation ; waves ; Wind spacecraft</subject><ispartof>The Astrophysical journal, 2018-03, Vol.856 (1), p.49</ispartof><rights>2018. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Mar 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-f644abbbcf12dc097b5c9af75b0b137d258f2b70ab96f395024d0a4ac33d25df3</citedby><cites>FETCH-LOGICAL-c416t-f644abbbcf12dc097b5c9af75b0b137d258f2b70ab96f395024d0a4ac33d25df3</cites><orcidid>0000-0002-5982-4667 ; 0000-0002-0497-1096 ; 0000-0003-2845-4250 ; 0000-0002-0622-5302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab03d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Woodham, Lloyd D.</creatorcontrib><creatorcontrib>Wicks, Robert T.</creatorcontrib><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Owen, Christopher J.</creatorcontrib><title>The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We use magnetic field and ion moment data from the MFI and SWE instruments on board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.4 Hz during 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI "noise-floor" using tail-lobe crossings of the Earth's magnetosphere during early 2004. We utilize Taylor's hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton cyclotron resonance scale, 1/kc, rather than the proton inertial length, di, or proton gyroscale, i. This agreement is strongest when we consider periods where , and is consistent with a spectral break at di for and at i for . We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/kc, and its absolute value reaches a maximum at i. These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.</description><subject>Astrophysics</subject><subject>Cyclotron resonance</subject><subject>Doppler effect</subject><subject>Earth magnetosphere</subject><subject>Energy dissipation</subject><subject>Helicity</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Noise measurement</subject><subject>plasmas</subject><subject>Protons</subject><subject>Resonance</subject><subject>Solar energy</subject><subject>Solar wind</subject><subject>Solar wind turbulence</subject><subject>Spacecraft</subject><subject>Spectra</subject><subject>Sun: heliosphere</subject><subject>Turbulence</subject><subject>Turbulent energy</subject><subject>Variation</subject><subject>waves</subject><subject>Wind spacecraft</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UDtPwzAQthBIlMLOaImVUCd2koYNlVelIlBbBFt0dmzVJbWDnQz9AfxvHAXBxHR33-ukD6HzmFzRKcsncUqnEaNpPgHghFYHaPQLHaIRIYRFGc3fj9GJ99v-TIpihL7WG4mXtpbYKvzibGsNnu1FbVsXtqX01oAREoPHgG-197qBVgfqSYoNGO13WBu8sjU4_KZNhded410tg-ca3-BVG9S-1QLqsHfVHkOL59ZEH9rIAONVYKQ_RUcKai_PfuYYvd7frWeP0eL5YT67WUSCxVkbqYwx4JwLFSeVIEXOU1GAylNOeEzzKkmnKuE5AV5kihYpSVhFgIGgNHCVomN0MeQ2zn520rfl1nbOhJdlQrO0oAmL46Aig0o4672Tqmyc3oHblzEp-7LLvtmyb7Ycyg6Wy8GibfOX-a_8G8BZggg</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Woodham, Lloyd D.</creator><creator>Wicks, Robert T.</creator><creator>Verscharen, Daniel</creator><creator>Owen, Christopher J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5982-4667</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid><orcidid>https://orcid.org/0000-0003-2845-4250</orcidid><orcidid>https://orcid.org/0000-0002-0622-5302</orcidid></search><sort><creationdate>20180320</creationdate><title>The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales</title><author>Woodham, Lloyd D. ; Wicks, Robert T. ; Verscharen, Daniel ; Owen, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-f644abbbcf12dc097b5c9af75b0b137d258f2b70ab96f395024d0a4ac33d25df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Cyclotron resonance</topic><topic>Doppler effect</topic><topic>Earth magnetosphere</topic><topic>Energy dissipation</topic><topic>Helicity</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Noise measurement</topic><topic>plasmas</topic><topic>Protons</topic><topic>Resonance</topic><topic>Solar energy</topic><topic>Solar wind</topic><topic>Solar wind turbulence</topic><topic>Spacecraft</topic><topic>Spectra</topic><topic>Sun: heliosphere</topic><topic>Turbulence</topic><topic>Turbulent energy</topic><topic>Variation</topic><topic>waves</topic><topic>Wind spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodham, Lloyd D.</creatorcontrib><creatorcontrib>Wicks, Robert T.</creatorcontrib><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Owen, Christopher J.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodham, Lloyd D.</au><au>Wicks, Robert T.</au><au>Verscharen, Daniel</au><au>Owen, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>856</volume><issue>1</issue><spage>49</spage><pages>49-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We use magnetic field and ion moment data from the MFI and SWE instruments on board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.4 Hz during 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI "noise-floor" using tail-lobe crossings of the Earth's magnetosphere during early 2004. We utilize Taylor's hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton cyclotron resonance scale, 1/kc, rather than the proton inertial length, di, or proton gyroscale, i. This agreement is strongest when we consider periods where , and is consistent with a spectral break at di for and at i for . We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/kc, and its absolute value reaches a maximum at i. These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aab03d</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5982-4667</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid><orcidid>https://orcid.org/0000-0003-2845-4250</orcidid><orcidid>https://orcid.org/0000-0002-0622-5302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-03, Vol.856 (1), p.49 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_aab03d |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Astrophysics Cyclotron resonance Doppler effect Earth magnetosphere Energy dissipation Helicity Magnetic fields Magnetic properties Noise measurement plasmas Protons Resonance Solar energy Solar wind Solar wind turbulence Spacecraft Spectra Sun: heliosphere Turbulence Turbulent energy Variation waves Wind spacecraft |
title | The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Proton%20Cyclotron%20Resonance%20as%20a%20Dissipation%20Mechanism%20in%20Solar%20Wind%20Turbulence:%20A%20Statistical%20Study%20at%20Ion-kinetic%20Scales&rft.jtitle=The%20Astrophysical%20journal&rft.au=Woodham,%20Lloyd%20D.&rft.date=2018-03-20&rft.volume=856&rft.issue=1&rft.spage=49&rft.pages=49-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aab03d&rft_dat=%3Cproquest_cross%3E2365932411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365932411&rft_id=info:pmid/&rfr_iscdi=true |