Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence
A new model describing the transport and evolution of turbulence in the quiet solar corona is presented. In the low plasma beta environment, transverse photospheric convective fluid motions drive predominantly quasi-2D (nonpropagating) turbulence in the mixed-polarity "magnetic carpet," to...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-02, Vol.854 (1), p.32 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | The Astrophysical journal |
container_volume | 854 |
creator | Zank, G. P. Adhikari, L. Hunana, P. Tiwari, S. K. Moore, R. Shiota, D. Bruno, R. Telloni, D. |
description | A new model describing the transport and evolution of turbulence in the quiet solar corona is presented. In the low plasma beta environment, transverse photospheric convective fluid motions drive predominantly quasi-2D (nonpropagating) turbulence in the mixed-polarity "magnetic carpet," together with a minority slab (Alfvénic) component. We use a simplified sub-Alfvénic flow velocity profile to solve transport equations describing the evolution and dissipation of turbulence from (including the Alfvén surface). Typical coronal base parameters are used, although one model uses correlation lengths derived observationally by Abramenko et al., and the other assumes values 10 times larger. The model predicts that (1) the majority quasi-2D turbulence evolves from a balanced state at the coronal base to an imbalanced state, with outward fluctuations dominating, at and beyond the Alfvén surface, i.e., inward turbulent fluctuations are dissipated preferentially; (2) the initially imbalanced slab component remains imbalanced throughout the solar corona, being dominated by outwardly propagating Alfvén waves, and wave reflection is weak; (3) quasi-2D turbulence becomes increasingly magnetized, and beyond , the kinetic energy is mainly in slab fluctuations; (4) there is no accumulation of inward energy at the Alfvén surface; (5) inertial range quasi-2D rather than slab fluctuations are preferentially dissipated within ; and (6) turbulent dissipation of quasi-2D fluctuations is sufficient to heat the corona to temperatures K within , consistent with observations that suggest that the fast solar wind is accelerated most efficiently between . |
doi_str_mv | 10.3847/1538-4357/aaa763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aaa763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365927639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-1c6311573a047b043da9bffa35ec0351fbd5c8b612181ef65eeb9145110e4bc93</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM1piJa0dfyQZUcVHpQIDAbFZtnOhqdI42MmQ_55GQcDCdLq7956efghdUrJgKU-WVLA04kwkS611ItkRmv2cjtGMEMIjyZL3U3QWwm5c4yyboV2-BecHrJsC5143oXW-w67ET6B9PeB1Y92-9RBCZWrAj_qjgc5th8K7Ymj0vrI4773pa2gsLPD6bYFfXK09XjnvGl3_-Z6jk1LXAS6-5xy93t3mq4do83y_Xt1sIsup7CJqJaNUJEwTnhjCWaEzU5aaCbCECVqaQtjUSBrTlEIpBYDJKBeUEuDGZmyOrqbc1rvPHkKndq73hy5BxUyKLD7QGVVkUlnvQvBQqtZXe-0HRYkaiaoRnxrxqYnowXI9WSrX_mb-K_8CSeJ4Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365927639</pqid></control><display><type>article</type><title>Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence</title><source>Institute of Physics Open Access Journal Titles</source><creator>Zank, G. P. ; Adhikari, L. ; Hunana, P. ; Tiwari, S. K. ; Moore, R. ; Shiota, D. ; Bruno, R. ; Telloni, D.</creator><creatorcontrib>Zank, G. P. ; Adhikari, L. ; Hunana, P. ; Tiwari, S. K. ; Moore, R. ; Shiota, D. ; Bruno, R. ; Telloni, D.</creatorcontrib><description>A new model describing the transport and evolution of turbulence in the quiet solar corona is presented. In the low plasma beta environment, transverse photospheric convective fluid motions drive predominantly quasi-2D (nonpropagating) turbulence in the mixed-polarity "magnetic carpet," together with a minority slab (Alfvénic) component. We use a simplified sub-Alfvénic flow velocity profile to solve transport equations describing the evolution and dissipation of turbulence from (including the Alfvén surface). Typical coronal base parameters are used, although one model uses correlation lengths derived observationally by Abramenko et al., and the other assumes values 10 times larger. The model predicts that (1) the majority quasi-2D turbulence evolves from a balanced state at the coronal base to an imbalanced state, with outward fluctuations dominating, at and beyond the Alfvén surface, i.e., inward turbulent fluctuations are dissipated preferentially; (2) the initially imbalanced slab component remains imbalanced throughout the solar corona, being dominated by outwardly propagating Alfvén waves, and wave reflection is weak; (3) quasi-2D turbulence becomes increasingly magnetized, and beyond , the kinetic energy is mainly in slab fluctuations; (4) there is no accumulation of inward energy at the Alfvén surface; (5) inertial range quasi-2D rather than slab fluctuations are preferentially dissipated within ; and (6) turbulent dissipation of quasi-2D fluctuations is sufficient to heat the corona to temperatures K within , consistent with observations that suggest that the fast solar wind is accelerated most efficiently between .</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaa763</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Alfven waves ; Astrophysics ; Computational fluid dynamics ; Corona ; Energy dissipation ; Evolution ; Flow velocity ; Fluctuations ; Fluid flow ; Incompressible flow ; Kinetic energy ; Magnetohydrodynamic turbulence ; Magnetohydrodynamics ; Photosphere ; Polarity ; Solar corona ; Solar wind ; Sun: corona ; Transport equations ; Turbulence ; Turbulent fluctuations ; Two dimensional models ; Velocity distribution ; Wave propagation ; Wave reflection</subject><ispartof>The Astrophysical journal, 2018-02, Vol.854 (1), p.32</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-1c6311573a047b043da9bffa35ec0351fbd5c8b612181ef65eeb9145110e4bc93</citedby><cites>FETCH-LOGICAL-c416t-1c6311573a047b043da9bffa35ec0351fbd5c8b612181ef65eeb9145110e4bc93</cites><orcidid>0000-0002-4642-6192 ; 0000-0001-7817-2978 ; 0000-0002-2152-0115 ; 0000-0003-1549-5256 ; 0000-0002-9032-8792 ; 0000-0002-9860-9759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaa763/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,38895,53872</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaa763$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Hunana, P.</creatorcontrib><creatorcontrib>Tiwari, S. K.</creatorcontrib><creatorcontrib>Moore, R.</creatorcontrib><creatorcontrib>Shiota, D.</creatorcontrib><creatorcontrib>Bruno, R.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><title>Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>A new model describing the transport and evolution of turbulence in the quiet solar corona is presented. In the low plasma beta environment, transverse photospheric convective fluid motions drive predominantly quasi-2D (nonpropagating) turbulence in the mixed-polarity "magnetic carpet," together with a minority slab (Alfvénic) component. We use a simplified sub-Alfvénic flow velocity profile to solve transport equations describing the evolution and dissipation of turbulence from (including the Alfvén surface). Typical coronal base parameters are used, although one model uses correlation lengths derived observationally by Abramenko et al., and the other assumes values 10 times larger. The model predicts that (1) the majority quasi-2D turbulence evolves from a balanced state at the coronal base to an imbalanced state, with outward fluctuations dominating, at and beyond the Alfvén surface, i.e., inward turbulent fluctuations are dissipated preferentially; (2) the initially imbalanced slab component remains imbalanced throughout the solar corona, being dominated by outwardly propagating Alfvén waves, and wave reflection is weak; (3) quasi-2D turbulence becomes increasingly magnetized, and beyond , the kinetic energy is mainly in slab fluctuations; (4) there is no accumulation of inward energy at the Alfvén surface; (5) inertial range quasi-2D rather than slab fluctuations are preferentially dissipated within ; and (6) turbulent dissipation of quasi-2D fluctuations is sufficient to heat the corona to temperatures K within , consistent with observations that suggest that the fast solar wind is accelerated most efficiently between .</description><subject>Alfven waves</subject><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Corona</subject><subject>Energy dissipation</subject><subject>Evolution</subject><subject>Flow velocity</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Kinetic energy</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamics</subject><subject>Photosphere</subject><subject>Polarity</subject><subject>Solar corona</subject><subject>Solar wind</subject><subject>Sun: corona</subject><subject>Transport equations</subject><subject>Turbulence</subject><subject>Turbulent fluctuations</subject><subject>Two dimensional models</subject><subject>Velocity distribution</subject><subject>Wave propagation</subject><subject>Wave reflection</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM1piJa0dfyQZUcVHpQIDAbFZtnOhqdI42MmQ_55GQcDCdLq7956efghdUrJgKU-WVLA04kwkS611ItkRmv2cjtGMEMIjyZL3U3QWwm5c4yyboV2-BecHrJsC5143oXW-w67ET6B9PeB1Y92-9RBCZWrAj_qjgc5th8K7Ymj0vrI4773pa2gsLPD6bYFfXK09XjnvGl3_-Z6jk1LXAS6-5xy93t3mq4do83y_Xt1sIsup7CJqJaNUJEwTnhjCWaEzU5aaCbCECVqaQtjUSBrTlEIpBYDJKBeUEuDGZmyOrqbc1rvPHkKndq73hy5BxUyKLD7QGVVkUlnvQvBQqtZXe-0HRYkaiaoRnxrxqYnowXI9WSrX_mb-K_8CSeJ4Tw</recordid><startdate>20180210</startdate><enddate>20180210</enddate><creator>Zank, G. P.</creator><creator>Adhikari, L.</creator><creator>Hunana, P.</creator><creator>Tiwari, S. K.</creator><creator>Moore, R.</creator><creator>Shiota, D.</creator><creator>Bruno, R.</creator><creator>Telloni, D.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0001-7817-2978</orcidid><orcidid>https://orcid.org/0000-0002-2152-0115</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-9032-8792</orcidid><orcidid>https://orcid.org/0000-0002-9860-9759</orcidid></search><sort><creationdate>20180210</creationdate><title>Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence</title><author>Zank, G. P. ; Adhikari, L. ; Hunana, P. ; Tiwari, S. K. ; Moore, R. ; Shiota, D. ; Bruno, R. ; Telloni, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-1c6311573a047b043da9bffa35ec0351fbd5c8b612181ef65eeb9145110e4bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alfven waves</topic><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Corona</topic><topic>Energy dissipation</topic><topic>Evolution</topic><topic>Flow velocity</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Kinetic energy</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamics</topic><topic>Photosphere</topic><topic>Polarity</topic><topic>Solar corona</topic><topic>Solar wind</topic><topic>Sun: corona</topic><topic>Transport equations</topic><topic>Turbulence</topic><topic>Turbulent fluctuations</topic><topic>Two dimensional models</topic><topic>Velocity distribution</topic><topic>Wave propagation</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Hunana, P.</creatorcontrib><creatorcontrib>Tiwari, S. K.</creatorcontrib><creatorcontrib>Moore, R.</creatorcontrib><creatorcontrib>Shiota, D.</creatorcontrib><creatorcontrib>Bruno, R.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zank, G. P.</au><au>Adhikari, L.</au><au>Hunana, P.</au><au>Tiwari, S. K.</au><au>Moore, R.</au><au>Shiota, D.</au><au>Bruno, R.</au><au>Telloni, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-02-10</date><risdate>2018</risdate><volume>854</volume><issue>1</issue><spage>32</spage><pages>32-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>A new model describing the transport and evolution of turbulence in the quiet solar corona is presented. In the low plasma beta environment, transverse photospheric convective fluid motions drive predominantly quasi-2D (nonpropagating) turbulence in the mixed-polarity "magnetic carpet," together with a minority slab (Alfvénic) component. We use a simplified sub-Alfvénic flow velocity profile to solve transport equations describing the evolution and dissipation of turbulence from (including the Alfvén surface). Typical coronal base parameters are used, although one model uses correlation lengths derived observationally by Abramenko et al., and the other assumes values 10 times larger. The model predicts that (1) the majority quasi-2D turbulence evolves from a balanced state at the coronal base to an imbalanced state, with outward fluctuations dominating, at and beyond the Alfvén surface, i.e., inward turbulent fluctuations are dissipated preferentially; (2) the initially imbalanced slab component remains imbalanced throughout the solar corona, being dominated by outwardly propagating Alfvén waves, and wave reflection is weak; (3) quasi-2D turbulence becomes increasingly magnetized, and beyond , the kinetic energy is mainly in slab fluctuations; (4) there is no accumulation of inward energy at the Alfvén surface; (5) inertial range quasi-2D rather than slab fluctuations are preferentially dissipated within ; and (6) turbulent dissipation of quasi-2D fluctuations is sufficient to heat the corona to temperatures K within , consistent with observations that suggest that the fast solar wind is accelerated most efficiently between .</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaa763</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0001-7817-2978</orcidid><orcidid>https://orcid.org/0000-0002-2152-0115</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-9032-8792</orcidid><orcidid>https://orcid.org/0000-0002-9860-9759</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-02, Vol.854 (1), p.32 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_aaa763 |
source | Institute of Physics Open Access Journal Titles |
subjects | Alfven waves Astrophysics Computational fluid dynamics Corona Energy dissipation Evolution Flow velocity Fluctuations Fluid flow Incompressible flow Kinetic energy Magnetohydrodynamic turbulence Magnetohydrodynamics Photosphere Polarity Solar corona Solar wind Sun: corona Transport equations Turbulence Turbulent fluctuations Two dimensional models Velocity distribution Wave propagation Wave reflection |
title | Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20and%20Transport%20of%20Nearly%20Incompressible%20Magnetohydrodynamic%20Turbulence.%20IV.%20Solar%20Coronal%20Turbulence&rft.jtitle=The%20Astrophysical%20journal&rft.au=Zank,%20G.%20P.&rft.date=2018-02-10&rft.volume=854&rft.issue=1&rft.spage=32&rft.pages=32-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaa763&rft_dat=%3Cproquest_O3W%3E2365927639%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365927639&rft_id=info:pmid/&rfr_iscdi=true |