Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields

We explore magnetic field configurations that lead to the formation of magnetic spots on the surface of neutron stars and the displacement of the magnetic dipole axis. We find that a toroidally dominated magnetic field is essential for the generation of a single spot with a strong magnetic field. On...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-01, Vol.852 (1), p.21
Hauptverfasser: Gourgouliatos, Konstantinos N., Hollerbach, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 21
container_title The Astrophysical journal
container_volume 852
creator Gourgouliatos, Konstantinos N.
Hollerbach, Rainer
description We explore magnetic field configurations that lead to the formation of magnetic spots on the surface of neutron stars and the displacement of the magnetic dipole axis. We find that a toroidally dominated magnetic field is essential for the generation of a single spot with a strong magnetic field. Once a spot forms, it survives for several million years, even after the total magnetic field has decayed significantly. We find that the dipole axis is not stationary with respect to the neutron star's surface and does not in general coincide with the location of the magnetic spot. This is due to non-axisymmetric instabilities of the toroidal field that displace the poloidal dipole axis at rates that may reach 0 4 per century. A misaligned poloidal dipole axis with the toroidal field leads to more significant displacement of the dipole axis than the fully aligned case. Finally we discuss the evolution of neutron stars with such magnetic fields on the diagram and the observational implications. We find that neutron stars spend a very short time before they cross the Death Line of the diagram, compared to their characteristic ages. Moreover, the maximum intensity of their surface magnetic field is substantially higher than the dipole component of the field. We argue that SGR 0418+5729 could be an example of this type of behavior, having a weak dipole field, yet hosting a magnetic spot responsible for its magnetar behavior. The evolution on the pulse profile and braking index of the Crab pulsar, which are attributed to an increase of its obliquity, are compatible with the anticipated drift of the magnetic axis.
doi_str_mv 10.3847/1538-4357/aa9d93
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aa9d93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365846877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-480ca4b4dd59a216757a3320f20bb508ebf0fcf0af7e5993f5f28436a89644ec3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwE9ujabj01yLNWqUPXQFryF7G6iKe1mTVLU_95dKvWip5l5_N4beACc5-iaCMpHOSMio4TxkdayluQADPbSIRgghGhWEP5yDE5iXPUnlnIAlo_6tTHJVXD86SK8Cc4mqJsa7vV56xOc-rDRyfkGugY-mW0K3TpPOkT44dIbXPjgXa3XcOrMuo6n4MjqdTRnP3MIltPbxeQ-mz3fPUzGs6wiXKaMClRpWtK6ZlLjvOCMa0IwshiVJUPClBbZyiJtuWFSEsssFpQUWsiCUlORIbjY5bbBv29NTGrlt6HpXipMCiZoITjvKLSjquBjDMaqNriNDl8qR6ovT_VNqb4ptSuvs1zuLM63v5m6XSnBsMoVzlVb2w67-gP7N_UbSWN8aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365846877</pqid></control><display><type>article</type><title>Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields</title><source>IOP Publishing Free Content</source><creator>Gourgouliatos, Konstantinos N. ; Hollerbach, Rainer</creator><creatorcontrib>Gourgouliatos, Konstantinos N. ; Hollerbach, Rainer</creatorcontrib><description>We explore magnetic field configurations that lead to the formation of magnetic spots on the surface of neutron stars and the displacement of the magnetic dipole axis. We find that a toroidally dominated magnetic field is essential for the generation of a single spot with a strong magnetic field. Once a spot forms, it survives for several million years, even after the total magnetic field has decayed significantly. We find that the dipole axis is not stationary with respect to the neutron star's surface and does not in general coincide with the location of the magnetic spot. This is due to non-axisymmetric instabilities of the toroidal field that displace the poloidal dipole axis at rates that may reach 0 4 per century. A misaligned poloidal dipole axis with the toroidal field leads to more significant displacement of the dipole axis than the fully aligned case. Finally we discuss the evolution of neutron stars with such magnetic fields on the diagram and the observational implications. We find that neutron stars spend a very short time before they cross the Death Line of the diagram, compared to their characteristic ages. Moreover, the maximum intensity of their surface magnetic field is substantially higher than the dipole component of the field. We argue that SGR 0418+5729 could be an example of this type of behavior, having a weak dipole field, yet hosting a magnetic spot responsible for its magnetar behavior. The evolution on the pulse profile and braking index of the Crab pulsar, which are attributed to an increase of its obliquity, are compatible with the anticipated drift of the magnetic axis.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa9d93</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Braking ; Displacement ; Drift ; Evolution ; Magnetars ; Magnetic dipoles ; Magnetic field configurations ; Magnetic fields ; Magnetism ; magnetohydrodynamics (MHD) ; methods: numerical ; Neutron stars ; Neutrons ; Obliquity ; Pulsars ; pulsars: general ; stars: magnetars ; stars: neutron ; Stellar evolution ; Stellar magnetic fields</subject><ispartof>The Astrophysical journal, 2018-01, Vol.852 (1), p.21</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 01, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-480ca4b4dd59a216757a3320f20bb508ebf0fcf0af7e5993f5f28436a89644ec3</citedby><cites>FETCH-LOGICAL-c379t-480ca4b4dd59a216757a3320f20bb508ebf0fcf0af7e5993f5f28436a89644ec3</cites><orcidid>0000-0001-8639-0967 ; 0000-0002-1659-1250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa9d93/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa9d93$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Gourgouliatos, Konstantinos N.</creatorcontrib><creatorcontrib>Hollerbach, Rainer</creatorcontrib><title>Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We explore magnetic field configurations that lead to the formation of magnetic spots on the surface of neutron stars and the displacement of the magnetic dipole axis. We find that a toroidally dominated magnetic field is essential for the generation of a single spot with a strong magnetic field. Once a spot forms, it survives for several million years, even after the total magnetic field has decayed significantly. We find that the dipole axis is not stationary with respect to the neutron star's surface and does not in general coincide with the location of the magnetic spot. This is due to non-axisymmetric instabilities of the toroidal field that displace the poloidal dipole axis at rates that may reach 0 4 per century. A misaligned poloidal dipole axis with the toroidal field leads to more significant displacement of the dipole axis than the fully aligned case. Finally we discuss the evolution of neutron stars with such magnetic fields on the diagram and the observational implications. We find that neutron stars spend a very short time before they cross the Death Line of the diagram, compared to their characteristic ages. Moreover, the maximum intensity of their surface magnetic field is substantially higher than the dipole component of the field. We argue that SGR 0418+5729 could be an example of this type of behavior, having a weak dipole field, yet hosting a magnetic spot responsible for its magnetar behavior. The evolution on the pulse profile and braking index of the Crab pulsar, which are attributed to an increase of its obliquity, are compatible with the anticipated drift of the magnetic axis.</description><subject>Astrophysics</subject><subject>Braking</subject><subject>Displacement</subject><subject>Drift</subject><subject>Evolution</subject><subject>Magnetars</subject><subject>Magnetic dipoles</subject><subject>Magnetic field configurations</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>magnetohydrodynamics (MHD)</subject><subject>methods: numerical</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Obliquity</subject><subject>Pulsars</subject><subject>pulsars: general</subject><subject>stars: magnetars</subject><subject>stars: neutron</subject><subject>Stellar evolution</subject><subject>Stellar magnetic fields</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwE9ujabj01yLNWqUPXQFryF7G6iKe1mTVLU_95dKvWip5l5_N4beACc5-iaCMpHOSMio4TxkdayluQADPbSIRgghGhWEP5yDE5iXPUnlnIAlo_6tTHJVXD86SK8Cc4mqJsa7vV56xOc-rDRyfkGugY-mW0K3TpPOkT44dIbXPjgXa3XcOrMuo6n4MjqdTRnP3MIltPbxeQ-mz3fPUzGs6wiXKaMClRpWtK6ZlLjvOCMa0IwshiVJUPClBbZyiJtuWFSEsssFpQUWsiCUlORIbjY5bbBv29NTGrlt6HpXipMCiZoITjvKLSjquBjDMaqNriNDl8qR6ovT_VNqb4ptSuvs1zuLM63v5m6XSnBsMoVzlVb2w67-gP7N_UbSWN8aQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Gourgouliatos, Konstantinos N.</creator><creator>Hollerbach, Rainer</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8639-0967</orcidid><orcidid>https://orcid.org/0000-0002-1659-1250</orcidid></search><sort><creationdate>20180101</creationdate><title>Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields</title><author>Gourgouliatos, Konstantinos N. ; Hollerbach, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-480ca4b4dd59a216757a3320f20bb508ebf0fcf0af7e5993f5f28436a89644ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Braking</topic><topic>Displacement</topic><topic>Drift</topic><topic>Evolution</topic><topic>Magnetars</topic><topic>Magnetic dipoles</topic><topic>Magnetic field configurations</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>magnetohydrodynamics (MHD)</topic><topic>methods: numerical</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Obliquity</topic><topic>Pulsars</topic><topic>pulsars: general</topic><topic>stars: magnetars</topic><topic>stars: neutron</topic><topic>Stellar evolution</topic><topic>Stellar magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gourgouliatos, Konstantinos N.</creatorcontrib><creatorcontrib>Hollerbach, Rainer</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gourgouliatos, Konstantinos N.</au><au>Hollerbach, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>852</volume><issue>1</issue><spage>21</spage><pages>21-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We explore magnetic field configurations that lead to the formation of magnetic spots on the surface of neutron stars and the displacement of the magnetic dipole axis. We find that a toroidally dominated magnetic field is essential for the generation of a single spot with a strong magnetic field. Once a spot forms, it survives for several million years, even after the total magnetic field has decayed significantly. We find that the dipole axis is not stationary with respect to the neutron star's surface and does not in general coincide with the location of the magnetic spot. This is due to non-axisymmetric instabilities of the toroidal field that displace the poloidal dipole axis at rates that may reach 0 4 per century. A misaligned poloidal dipole axis with the toroidal field leads to more significant displacement of the dipole axis than the fully aligned case. Finally we discuss the evolution of neutron stars with such magnetic fields on the diagram and the observational implications. We find that neutron stars spend a very short time before they cross the Death Line of the diagram, compared to their characteristic ages. Moreover, the maximum intensity of their surface magnetic field is substantially higher than the dipole component of the field. We argue that SGR 0418+5729 could be an example of this type of behavior, having a weak dipole field, yet hosting a magnetic spot responsible for its magnetar behavior. The evolution on the pulse profile and braking index of the Crab pulsar, which are attributed to an increase of its obliquity, are compatible with the anticipated drift of the magnetic axis.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa9d93</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8639-0967</orcidid><orcidid>https://orcid.org/0000-0002-1659-1250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-01, Vol.852 (1), p.21
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_aa9d93
source IOP Publishing Free Content
subjects Astrophysics
Braking
Displacement
Drift
Evolution
Magnetars
Magnetic dipoles
Magnetic field configurations
Magnetic fields
Magnetism
magnetohydrodynamics (MHD)
methods: numerical
Neutron stars
Neutrons
Obliquity
Pulsars
pulsars: general
stars: magnetars
stars: neutron
Stellar evolution
Stellar magnetic fields
title Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Axis%20Drift%20and%20Magnetic%20Spot%20Formation%20in%20Neutron%20Stars%20with%20Toroidal%20Fields&rft.jtitle=The%20Astrophysical%20journal&rft.au=Gourgouliatos,%20Konstantinos%20N.&rft.date=2018-01-01&rft.volume=852&rft.issue=1&rft.spage=21&rft.pages=21-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa9d93&rft_dat=%3Cproquest_O3W%3E2365846877%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365846877&rft_id=info:pmid/&rfr_iscdi=true