Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-10, Vol.848 (2), p.105
Hauptverfasser: Tews, Ingo, Lattimer, James M., Ohnishi, Akira, Kolomeitsev, Evgeni E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 105
container_title The Astrophysical journal
container_volume 848
creator Tews, Ingo
Lattimer, James M.
Ohnishi, Akira
Kolomeitsev, Evgeni E.
description We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.
doi_str_mv 10.3847/1538-4357/aa8db9
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aa8db9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365878144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-b36a278d1ea749c864ed54123f80dd4c3a6bfc0137debfd8fb7370a32c28b6673</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQa9WjdfbdKjLusXiwoqeAtpkmoXm6xJivS_t6WiJ08zk_m9x-QBcIzRORWML3BORcZozhdKCVOVO2D2-7QLZgghlhWUv-6Dgxg340jKcgbunvq2tSn08FEFNXQ2wKV3MQXVuBRhHXwLFVz7r2Fx6TtnoHfw3nYpeJe1Ko2ClbPhrT8Ee7X6iPbop87By9XqeXmTrR-ub5cX60wzwVNW0UIRLgy2irNSi4JZkzNMaC2QMUxTVVS1RphyY6vaiLrilCNFiSaiKgpO5-Bk8vUxNTLqJln9rr1zVic5_JmTkg7Q6QRtg__sbExy47vghrskoUUuuMCMDRSaKB18jMHWchuaVoVeYiTHWEc_IccM5RTrIDmbJI3f_nn-i38D1xd5GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365878144</pqid></control><display><type>article</type><title>Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy</title><source>IOP Publishing Free Content</source><creator>Tews, Ingo ; Lattimer, James M. ; Ohnishi, Akira ; Kolomeitsev, Evgeni E.</creator><creatorcontrib>Tews, Ingo ; Lattimer, James M. ; Ohnishi, Akira ; Kolomeitsev, Evgeni E. ; State Univ. of New York (SUNY), Albany, NY (United States) ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa8db9</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomy &amp; Astrophysics ; Astrophysics ; Atomic collisions ; Cold atoms ; dense matter ; Density ; Density dependence ; Energy ; equation of state ; Equations of state ; Heavy ions ; Incompressibility ; Ionic collisions ; Lower bounds ; Neutron stars ; Neutrons ; Nuclear matter ; Nuclear physics ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Parameters ; Saturation ; stars: neutron ; Supernovae ; Symmetry</subject><ispartof>The Astrophysical journal, 2017-10, Vol.848 (2), p.105</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-b36a278d1ea749c864ed54123f80dd4c3a6bfc0137debfd8fb7370a32c28b6673</citedby><cites>FETCH-LOGICAL-c487t-b36a278d1ea749c864ed54123f80dd4c3a6bfc0137debfd8fb7370a32c28b6673</cites><orcidid>0000-0003-1513-0468 ; 0000-0003-2656-6355 ; 0000-0003-1160-2050 ; 0000-0002-5907-4552 ; 0000000259074552 ; 0000000315130468 ; 0000000311602050 ; 0000000326566355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8db9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8db9$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1537293$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tews, Ingo</creatorcontrib><creatorcontrib>Lattimer, James M.</creatorcontrib><creatorcontrib>Ohnishi, Akira</creatorcontrib><creatorcontrib>Kolomeitsev, Evgeni E.</creatorcontrib><creatorcontrib>State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.</description><subject>Astronomy &amp; Astrophysics</subject><subject>Astrophysics</subject><subject>Atomic collisions</subject><subject>Cold atoms</subject><subject>dense matter</subject><subject>Density</subject><subject>Density dependence</subject><subject>Energy</subject><subject>equation of state</subject><subject>Equations of state</subject><subject>Heavy ions</subject><subject>Incompressibility</subject><subject>Ionic collisions</subject><subject>Lower bounds</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear matter</subject><subject>Nuclear physics</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Parameters</subject><subject>Saturation</subject><subject>stars: neutron</subject><subject>Supernovae</subject><subject>Symmetry</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQa9WjdfbdKjLusXiwoqeAtpkmoXm6xJivS_t6WiJ08zk_m9x-QBcIzRORWML3BORcZozhdKCVOVO2D2-7QLZgghlhWUv-6Dgxg340jKcgbunvq2tSn08FEFNXQ2wKV3MQXVuBRhHXwLFVz7r2Fx6TtnoHfw3nYpeJe1Ko2ClbPhrT8Ee7X6iPbop87By9XqeXmTrR-ub5cX60wzwVNW0UIRLgy2irNSi4JZkzNMaC2QMUxTVVS1RphyY6vaiLrilCNFiSaiKgpO5-Bk8vUxNTLqJln9rr1zVic5_JmTkg7Q6QRtg__sbExy47vghrskoUUuuMCMDRSaKB18jMHWchuaVoVeYiTHWEc_IccM5RTrIDmbJI3f_nn-i38D1xd5GQ</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Tews, Ingo</creator><creator>Lattimer, James M.</creator><creator>Ohnishi, Akira</creator><creator>Kolomeitsev, Evgeni E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1513-0468</orcidid><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/0000-0003-1160-2050</orcidid><orcidid>https://orcid.org/0000-0002-5907-4552</orcidid><orcidid>https://orcid.org/0000000259074552</orcidid><orcidid>https://orcid.org/0000000315130468</orcidid><orcidid>https://orcid.org/0000000311602050</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid></search><sort><creationdate>20171020</creationdate><title>Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy</title><author>Tews, Ingo ; Lattimer, James M. ; Ohnishi, Akira ; Kolomeitsev, Evgeni E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-b36a278d1ea749c864ed54123f80dd4c3a6bfc0137debfd8fb7370a32c28b6673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astronomy &amp; Astrophysics</topic><topic>Astrophysics</topic><topic>Atomic collisions</topic><topic>Cold atoms</topic><topic>dense matter</topic><topic>Density</topic><topic>Density dependence</topic><topic>Energy</topic><topic>equation of state</topic><topic>Equations of state</topic><topic>Heavy ions</topic><topic>Incompressibility</topic><topic>Ionic collisions</topic><topic>Lower bounds</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear matter</topic><topic>Nuclear physics</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Parameters</topic><topic>Saturation</topic><topic>stars: neutron</topic><topic>Supernovae</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tews, Ingo</creatorcontrib><creatorcontrib>Lattimer, James M.</creatorcontrib><creatorcontrib>Ohnishi, Akira</creatorcontrib><creatorcontrib>Kolomeitsev, Evgeni E.</creatorcontrib><creatorcontrib>State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tews, Ingo</au><au>Lattimer, James M.</au><au>Ohnishi, Akira</au><au>Kolomeitsev, Evgeni E.</au><aucorp>State Univ. of New York (SUNY), Albany, NY (United States)</aucorp><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-10-20</date><risdate>2017</risdate><volume>848</volume><issue>2</issue><spage>105</spage><pages>105-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa8db9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1513-0468</orcidid><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/0000-0003-1160-2050</orcidid><orcidid>https://orcid.org/0000-0002-5907-4552</orcidid><orcidid>https://orcid.org/0000000259074552</orcidid><orcidid>https://orcid.org/0000000315130468</orcidid><orcidid>https://orcid.org/0000000311602050</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-10, Vol.848 (2), p.105
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_aa8db9
source IOP Publishing Free Content
subjects Astronomy & Astrophysics
Astrophysics
Atomic collisions
Cold atoms
dense matter
Density
Density dependence
Energy
equation of state
Equations of state
Heavy ions
Incompressibility
Ionic collisions
Lower bounds
Neutron stars
Neutrons
Nuclear matter
Nuclear physics
NUCLEAR PHYSICS AND RADIATION PHYSICS
Parameters
Saturation
stars: neutron
Supernovae
Symmetry
title Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20Parameter%20Constraints%20from%20a%20Lower%20Bound%20on%20Neutron-matter%20Energy&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tews,%20Ingo&rft.aucorp=State%20Univ.%20of%20New%20York%20(SUNY),%20Albany,%20NY%20(United%20States)&rft.date=2017-10-20&rft.volume=848&rft.issue=2&rft.spage=105&rft.pages=105-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa8db9&rft_dat=%3Cproquest_O3W%3E2365878144%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365878144&rft_id=info:pmid/&rfr_iscdi=true