Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limit...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-10, Vol.848 (2), p.105 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 105 |
container_title | The Astrophysical journal |
container_volume | 848 |
creator | Tews, Ingo Lattimer, James M. Ohnishi, Akira Kolomeitsev, Evgeni E. |
description | We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process. |
doi_str_mv | 10.3847/1538-4357/aa8db9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aa8db9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365878144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-b36a278d1ea749c864ed54123f80dd4c3a6bfc0137debfd8fb7370a32c28b6673</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQa9WjdfbdKjLusXiwoqeAtpkmoXm6xJivS_t6WiJ08zk_m9x-QBcIzRORWML3BORcZozhdKCVOVO2D2-7QLZgghlhWUv-6Dgxg340jKcgbunvq2tSn08FEFNXQ2wKV3MQXVuBRhHXwLFVz7r2Fx6TtnoHfw3nYpeJe1Ko2ClbPhrT8Ee7X6iPbop87By9XqeXmTrR-ub5cX60wzwVNW0UIRLgy2irNSi4JZkzNMaC2QMUxTVVS1RphyY6vaiLrilCNFiSaiKgpO5-Bk8vUxNTLqJln9rr1zVic5_JmTkg7Q6QRtg__sbExy47vghrskoUUuuMCMDRSaKB18jMHWchuaVoVeYiTHWEc_IccM5RTrIDmbJI3f_nn-i38D1xd5GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365878144</pqid></control><display><type>article</type><title>Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy</title><source>IOP Publishing Free Content</source><creator>Tews, Ingo ; Lattimer, James M. ; Ohnishi, Akira ; Kolomeitsev, Evgeni E.</creator><creatorcontrib>Tews, Ingo ; Lattimer, James M. ; Ohnishi, Akira ; Kolomeitsev, Evgeni E. ; State Univ. of New York (SUNY), Albany, NY (United States) ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa8db9</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomy & Astrophysics ; Astrophysics ; Atomic collisions ; Cold atoms ; dense matter ; Density ; Density dependence ; Energy ; equation of state ; Equations of state ; Heavy ions ; Incompressibility ; Ionic collisions ; Lower bounds ; Neutron stars ; Neutrons ; Nuclear matter ; Nuclear physics ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Parameters ; Saturation ; stars: neutron ; Supernovae ; Symmetry</subject><ispartof>The Astrophysical journal, 2017-10, Vol.848 (2), p.105</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-b36a278d1ea749c864ed54123f80dd4c3a6bfc0137debfd8fb7370a32c28b6673</citedby><cites>FETCH-LOGICAL-c487t-b36a278d1ea749c864ed54123f80dd4c3a6bfc0137debfd8fb7370a32c28b6673</cites><orcidid>0000-0003-1513-0468 ; 0000-0003-2656-6355 ; 0000-0003-1160-2050 ; 0000-0002-5907-4552 ; 0000000259074552 ; 0000000315130468 ; 0000000311602050 ; 0000000326566355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8db9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8db9$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1537293$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tews, Ingo</creatorcontrib><creatorcontrib>Lattimer, James M.</creatorcontrib><creatorcontrib>Ohnishi, Akira</creatorcontrib><creatorcontrib>Kolomeitsev, Evgeni E.</creatorcontrib><creatorcontrib>State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.</description><subject>Astronomy & Astrophysics</subject><subject>Astrophysics</subject><subject>Atomic collisions</subject><subject>Cold atoms</subject><subject>dense matter</subject><subject>Density</subject><subject>Density dependence</subject><subject>Energy</subject><subject>equation of state</subject><subject>Equations of state</subject><subject>Heavy ions</subject><subject>Incompressibility</subject><subject>Ionic collisions</subject><subject>Lower bounds</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear matter</subject><subject>Nuclear physics</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Parameters</subject><subject>Saturation</subject><subject>stars: neutron</subject><subject>Supernovae</subject><subject>Symmetry</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQa9WjdfbdKjLusXiwoqeAtpkmoXm6xJivS_t6WiJ08zk_m9x-QBcIzRORWML3BORcZozhdKCVOVO2D2-7QLZgghlhWUv-6Dgxg340jKcgbunvq2tSn08FEFNXQ2wKV3MQXVuBRhHXwLFVz7r2Fx6TtnoHfw3nYpeJe1Ko2ClbPhrT8Ee7X6iPbop87By9XqeXmTrR-ub5cX60wzwVNW0UIRLgy2irNSi4JZkzNMaC2QMUxTVVS1RphyY6vaiLrilCNFiSaiKgpO5-Bk8vUxNTLqJln9rr1zVic5_JmTkg7Q6QRtg__sbExy47vghrskoUUuuMCMDRSaKB18jMHWchuaVoVeYiTHWEc_IccM5RTrIDmbJI3f_nn-i38D1xd5GQ</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Tews, Ingo</creator><creator>Lattimer, James M.</creator><creator>Ohnishi, Akira</creator><creator>Kolomeitsev, Evgeni E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1513-0468</orcidid><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/0000-0003-1160-2050</orcidid><orcidid>https://orcid.org/0000-0002-5907-4552</orcidid><orcidid>https://orcid.org/0000000259074552</orcidid><orcidid>https://orcid.org/0000000315130468</orcidid><orcidid>https://orcid.org/0000000311602050</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid></search><sort><creationdate>20171020</creationdate><title>Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy</title><author>Tews, Ingo ; Lattimer, James M. ; Ohnishi, Akira ; Kolomeitsev, Evgeni E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-b36a278d1ea749c864ed54123f80dd4c3a6bfc0137debfd8fb7370a32c28b6673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astronomy & Astrophysics</topic><topic>Astrophysics</topic><topic>Atomic collisions</topic><topic>Cold atoms</topic><topic>dense matter</topic><topic>Density</topic><topic>Density dependence</topic><topic>Energy</topic><topic>equation of state</topic><topic>Equations of state</topic><topic>Heavy ions</topic><topic>Incompressibility</topic><topic>Ionic collisions</topic><topic>Lower bounds</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear matter</topic><topic>Nuclear physics</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Parameters</topic><topic>Saturation</topic><topic>stars: neutron</topic><topic>Supernovae</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tews, Ingo</creatorcontrib><creatorcontrib>Lattimer, James M.</creatorcontrib><creatorcontrib>Ohnishi, Akira</creatorcontrib><creatorcontrib>Kolomeitsev, Evgeni E.</creatorcontrib><creatorcontrib>State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tews, Ingo</au><au>Lattimer, James M.</au><au>Ohnishi, Akira</au><au>Kolomeitsev, Evgeni E.</au><aucorp>State Univ. of New York (SUNY), Albany, NY (United States)</aucorp><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-10-20</date><risdate>2017</risdate><volume>848</volume><issue>2</issue><spage>105</spage><pages>105-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa8db9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1513-0468</orcidid><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/0000-0003-1160-2050</orcidid><orcidid>https://orcid.org/0000-0002-5907-4552</orcidid><orcidid>https://orcid.org/0000000259074552</orcidid><orcidid>https://orcid.org/0000000315130468</orcidid><orcidid>https://orcid.org/0000000311602050</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-10, Vol.848 (2), p.105 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_aa8db9 |
source | IOP Publishing Free Content |
subjects | Astronomy & Astrophysics Astrophysics Atomic collisions Cold atoms dense matter Density Density dependence Energy equation of state Equations of state Heavy ions Incompressibility Ionic collisions Lower bounds Neutron stars Neutrons Nuclear matter Nuclear physics NUCLEAR PHYSICS AND RADIATION PHYSICS Parameters Saturation stars: neutron Supernovae Symmetry |
title | Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20Parameter%20Constraints%20from%20a%20Lower%20Bound%20on%20Neutron-matter%20Energy&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tews,%20Ingo&rft.aucorp=State%20Univ.%20of%20New%20York%20(SUNY),%20Albany,%20NY%20(United%20States)&rft.date=2017-10-20&rft.volume=848&rft.issue=2&rft.spage=105&rft.pages=105-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa8db9&rft_dat=%3Cproquest_O3W%3E2365878144%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365878144&rft_id=info:pmid/&rfr_iscdi=true |