Radiation-driven Turbulent Accretion onto Massive Black Holes

Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-09, Vol.847 (1), p.70
Hauptverfasser: Park, KwangHo, Wise, John H., Bogdanovi, Tamara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 70
container_title The Astrophysical journal
container_volume 847
creator Park, KwangHo
Wise, John H.
Bogdanovi, Tamara
description Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.
doi_str_mv 10.3847/1538-4357/aa8729
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aa8729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365885927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-339b23711b8e23a901f8c681f232845e9ddafe179858910de092e0c2f95d07723</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwU9Ws2PtkkOHuZQJ0wEmeAtZEmKmTWpSSr439tacRc9feTL8758PAAcI3hOWEEvUElYXpCSXkjJKOY7YPK72gUTCGGRV4Q-74ODGDfDE3M-AZePUluZrHe5DvbDuGzVhXXXGJeymVLBDF-Zd8ln9zLGnsiuGqles4VvTDwEe7Vsojn6mVPwdHO9mi_y5cPt3Xy2zFVBScoJ4WtMKEJrZjCRHKKaqYqhGhPMitJwrWVtEOWsZBxBbSDHBipc81JDSjGZgpOx18dkRVQ2GfWivHNGJYFx1ScR21Jt8O-diUlsfBdcf5jApCoZKzmmPQVHSgUfYzC1aIN9k-FTICgGlWLwJgZvYlTZR07HiPXttlO2G_GNCwpFq-seO_sD-7f1C-OYfqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365885927</pqid></control><display><type>article</type><title>Radiation-driven Turbulent Accretion onto Massive Black Holes</title><source>IOP Publishing Free Content</source><creator>Park, KwangHo ; Wise, John H. ; Bogdanovi, Tamara</creator><creatorcontrib>Park, KwangHo ; Wise, John H. ; Bogdanovi, Tamara</creatorcontrib><description>Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa8729</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion ; ACCRETION DISKS ; accretion, accretion disks ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; black hole physics ; BLACK HOLES ; Cold gas ; Computational fluid dynamics ; Computer simulation ; COSMIC GASES ; DENSITY ; Deposition ; ECOSYSTEMS ; ENERGY BALANCE ; Energy budget ; GALAXIES ; Gas density ; GAS FLOW ; HYDRODYNAMIC MODEL ; hydrodynamics ; IONIZATION ; Ionizing radiation ; Kinetic energy ; OSCILLATIONS ; Outbursts ; PERIODICITY ; RADIANT HEAT TRANSFER ; Radiation ; radiative transfer ; RESOLUTION ; SIMULATION ; Thermal energy ; THREE-DIMENSIONAL CALCULATIONS ; TURBULENCE ; Turbulent flow ; Two dimensional models ; X RADIATION</subject><ispartof>The Astrophysical journal, 2017-09, Vol.847 (1), p.70</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-339b23711b8e23a901f8c681f232845e9ddafe179858910de092e0c2f95d07723</citedby><cites>FETCH-LOGICAL-c473t-339b23711b8e23a901f8c681f232845e9ddafe179858910de092e0c2f95d07723</cites><orcidid>0000-0002-7835-7814 ; 0000-0003-1173-8847 ; 0000-0001-7973-5744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8729/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,778,782,883,27911,27912,38877,53854</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8729$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22679818$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, KwangHo</creatorcontrib><creatorcontrib>Wise, John H.</creatorcontrib><creatorcontrib>Bogdanovi, Tamara</creatorcontrib><title>Radiation-driven Turbulent Accretion onto Massive Black Holes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.</description><subject>Accretion</subject><subject>ACCRETION DISKS</subject><subject>accretion, accretion disks</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>black hole physics</subject><subject>BLACK HOLES</subject><subject>Cold gas</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>COSMIC GASES</subject><subject>DENSITY</subject><subject>Deposition</subject><subject>ECOSYSTEMS</subject><subject>ENERGY BALANCE</subject><subject>Energy budget</subject><subject>GALAXIES</subject><subject>Gas density</subject><subject>GAS FLOW</subject><subject>HYDRODYNAMIC MODEL</subject><subject>hydrodynamics</subject><subject>IONIZATION</subject><subject>Ionizing radiation</subject><subject>Kinetic energy</subject><subject>OSCILLATIONS</subject><subject>Outbursts</subject><subject>PERIODICITY</subject><subject>RADIANT HEAT TRANSFER</subject><subject>Radiation</subject><subject>radiative transfer</subject><subject>RESOLUTION</subject><subject>SIMULATION</subject><subject>Thermal energy</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>Two dimensional models</subject><subject>X RADIATION</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3jwU9Ws2PtkkOHuZQJ0wEmeAtZEmKmTWpSSr439tacRc9feTL8758PAAcI3hOWEEvUElYXpCSXkjJKOY7YPK72gUTCGGRV4Q-74ODGDfDE3M-AZePUluZrHe5DvbDuGzVhXXXGJeymVLBDF-Zd8ln9zLGnsiuGqles4VvTDwEe7Vsojn6mVPwdHO9mi_y5cPt3Xy2zFVBScoJ4WtMKEJrZjCRHKKaqYqhGhPMitJwrWVtEOWsZBxBbSDHBipc81JDSjGZgpOx18dkRVQ2GfWivHNGJYFx1ScR21Jt8O-diUlsfBdcf5jApCoZKzmmPQVHSgUfYzC1aIN9k-FTICgGlWLwJgZvYlTZR07HiPXttlO2G_GNCwpFq-seO_sD-7f1C-OYfqY</recordid><startdate>20170920</startdate><enddate>20170920</enddate><creator>Park, KwangHo</creator><creator>Wise, John H.</creator><creator>Bogdanovi, Tamara</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7835-7814</orcidid><orcidid>https://orcid.org/0000-0003-1173-8847</orcidid><orcidid>https://orcid.org/0000-0001-7973-5744</orcidid></search><sort><creationdate>20170920</creationdate><title>Radiation-driven Turbulent Accretion onto Massive Black Holes</title><author>Park, KwangHo ; Wise, John H. ; Bogdanovi, Tamara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-339b23711b8e23a901f8c681f232845e9ddafe179858910de092e0c2f95d07723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accretion</topic><topic>ACCRETION DISKS</topic><topic>accretion, accretion disks</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>black hole physics</topic><topic>BLACK HOLES</topic><topic>Cold gas</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>COSMIC GASES</topic><topic>DENSITY</topic><topic>Deposition</topic><topic>ECOSYSTEMS</topic><topic>ENERGY BALANCE</topic><topic>Energy budget</topic><topic>GALAXIES</topic><topic>Gas density</topic><topic>GAS FLOW</topic><topic>HYDRODYNAMIC MODEL</topic><topic>hydrodynamics</topic><topic>IONIZATION</topic><topic>Ionizing radiation</topic><topic>Kinetic energy</topic><topic>OSCILLATIONS</topic><topic>Outbursts</topic><topic>PERIODICITY</topic><topic>RADIANT HEAT TRANSFER</topic><topic>Radiation</topic><topic>radiative transfer</topic><topic>RESOLUTION</topic><topic>SIMULATION</topic><topic>Thermal energy</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>Two dimensional models</topic><topic>X RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, KwangHo</creatorcontrib><creatorcontrib>Wise, John H.</creatorcontrib><creatorcontrib>Bogdanovi, Tamara</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, KwangHo</au><au>Wise, John H.</au><au>Bogdanovi, Tamara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-driven Turbulent Accretion onto Massive Black Holes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-09-20</date><risdate>2017</risdate><volume>847</volume><issue>1</issue><spage>70</spage><pages>70-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa8729</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7835-7814</orcidid><orcidid>https://orcid.org/0000-0003-1173-8847</orcidid><orcidid>https://orcid.org/0000-0001-7973-5744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-09, Vol.847 (1), p.70
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_aa8729
source IOP Publishing Free Content
subjects Accretion
ACCRETION DISKS
accretion, accretion disks
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
black hole physics
BLACK HOLES
Cold gas
Computational fluid dynamics
Computer simulation
COSMIC GASES
DENSITY
Deposition
ECOSYSTEMS
ENERGY BALANCE
Energy budget
GALAXIES
Gas density
GAS FLOW
HYDRODYNAMIC MODEL
hydrodynamics
IONIZATION
Ionizing radiation
Kinetic energy
OSCILLATIONS
Outbursts
PERIODICITY
RADIANT HEAT TRANSFER
Radiation
radiative transfer
RESOLUTION
SIMULATION
Thermal energy
THREE-DIMENSIONAL CALCULATIONS
TURBULENCE
Turbulent flow
Two dimensional models
X RADIATION
title Radiation-driven Turbulent Accretion onto Massive Black Holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-driven%20Turbulent%20Accretion%20onto%20Massive%20Black%20Holes&rft.jtitle=The%20Astrophysical%20journal&rft.au=Park,%20KwangHo&rft.date=2017-09-20&rft.volume=847&rft.issue=1&rft.spage=70&rft.pages=70-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa8729&rft_dat=%3Cproquest_O3W%3E2365885927%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365885927&rft_id=info:pmid/&rfr_iscdi=true