Radiation-driven Turbulent Accretion onto Massive Black Holes
Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of t...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-09, Vol.847 (1), p.70 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | The Astrophysical journal |
container_volume | 847 |
creator | Park, KwangHo Wise, John H. Bogdanovi, Tamara |
description | Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas. |
doi_str_mv | 10.3847/1538-4357/aa8729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aa8729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365885927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-339b23711b8e23a901f8c681f232845e9ddafe179858910de092e0c2f95d07723</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwU9Ws2PtkkOHuZQJ0wEmeAtZEmKmTWpSSr439tacRc9feTL8758PAAcI3hOWEEvUElYXpCSXkjJKOY7YPK72gUTCGGRV4Q-74ODGDfDE3M-AZePUluZrHe5DvbDuGzVhXXXGJeymVLBDF-Zd8ln9zLGnsiuGqles4VvTDwEe7Vsojn6mVPwdHO9mi_y5cPt3Xy2zFVBScoJ4WtMKEJrZjCRHKKaqYqhGhPMitJwrWVtEOWsZBxBbSDHBipc81JDSjGZgpOx18dkRVQ2GfWivHNGJYFx1ScR21Jt8O-diUlsfBdcf5jApCoZKzmmPQVHSgUfYzC1aIN9k-FTICgGlWLwJgZvYlTZR07HiPXttlO2G_GNCwpFq-seO_sD-7f1C-OYfqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365885927</pqid></control><display><type>article</type><title>Radiation-driven Turbulent Accretion onto Massive Black Holes</title><source>IOP Publishing Free Content</source><creator>Park, KwangHo ; Wise, John H. ; Bogdanovi, Tamara</creator><creatorcontrib>Park, KwangHo ; Wise, John H. ; Bogdanovi, Tamara</creatorcontrib><description>Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa8729</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion ; ACCRETION DISKS ; accretion, accretion disks ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; black hole physics ; BLACK HOLES ; Cold gas ; Computational fluid dynamics ; Computer simulation ; COSMIC GASES ; DENSITY ; Deposition ; ECOSYSTEMS ; ENERGY BALANCE ; Energy budget ; GALAXIES ; Gas density ; GAS FLOW ; HYDRODYNAMIC MODEL ; hydrodynamics ; IONIZATION ; Ionizing radiation ; Kinetic energy ; OSCILLATIONS ; Outbursts ; PERIODICITY ; RADIANT HEAT TRANSFER ; Radiation ; radiative transfer ; RESOLUTION ; SIMULATION ; Thermal energy ; THREE-DIMENSIONAL CALCULATIONS ; TURBULENCE ; Turbulent flow ; Two dimensional models ; X RADIATION</subject><ispartof>The Astrophysical journal, 2017-09, Vol.847 (1), p.70</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-339b23711b8e23a901f8c681f232845e9ddafe179858910de092e0c2f95d07723</citedby><cites>FETCH-LOGICAL-c473t-339b23711b8e23a901f8c681f232845e9ddafe179858910de092e0c2f95d07723</cites><orcidid>0000-0002-7835-7814 ; 0000-0003-1173-8847 ; 0000-0001-7973-5744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8729/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,778,782,883,27911,27912,38877,53854</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8729$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22679818$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, KwangHo</creatorcontrib><creatorcontrib>Wise, John H.</creatorcontrib><creatorcontrib>Bogdanovi, Tamara</creatorcontrib><title>Radiation-driven Turbulent Accretion onto Massive Black Holes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.</description><subject>Accretion</subject><subject>ACCRETION DISKS</subject><subject>accretion, accretion disks</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>black hole physics</subject><subject>BLACK HOLES</subject><subject>Cold gas</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>COSMIC GASES</subject><subject>DENSITY</subject><subject>Deposition</subject><subject>ECOSYSTEMS</subject><subject>ENERGY BALANCE</subject><subject>Energy budget</subject><subject>GALAXIES</subject><subject>Gas density</subject><subject>GAS FLOW</subject><subject>HYDRODYNAMIC MODEL</subject><subject>hydrodynamics</subject><subject>IONIZATION</subject><subject>Ionizing radiation</subject><subject>Kinetic energy</subject><subject>OSCILLATIONS</subject><subject>Outbursts</subject><subject>PERIODICITY</subject><subject>RADIANT HEAT TRANSFER</subject><subject>Radiation</subject><subject>radiative transfer</subject><subject>RESOLUTION</subject><subject>SIMULATION</subject><subject>Thermal energy</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>Two dimensional models</subject><subject>X RADIATION</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3jwU9Ws2PtkkOHuZQJ0wEmeAtZEmKmTWpSSr439tacRc9feTL8758PAAcI3hOWEEvUElYXpCSXkjJKOY7YPK72gUTCGGRV4Q-74ODGDfDE3M-AZePUluZrHe5DvbDuGzVhXXXGJeymVLBDF-Zd8ln9zLGnsiuGqles4VvTDwEe7Vsojn6mVPwdHO9mi_y5cPt3Xy2zFVBScoJ4WtMKEJrZjCRHKKaqYqhGhPMitJwrWVtEOWsZBxBbSDHBipc81JDSjGZgpOx18dkRVQ2GfWivHNGJYFx1ScR21Jt8O-diUlsfBdcf5jApCoZKzmmPQVHSgUfYzC1aIN9k-FTICgGlWLwJgZvYlTZR07HiPXttlO2G_GNCwpFq-seO_sD-7f1C-OYfqY</recordid><startdate>20170920</startdate><enddate>20170920</enddate><creator>Park, KwangHo</creator><creator>Wise, John H.</creator><creator>Bogdanovi, Tamara</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7835-7814</orcidid><orcidid>https://orcid.org/0000-0003-1173-8847</orcidid><orcidid>https://orcid.org/0000-0001-7973-5744</orcidid></search><sort><creationdate>20170920</creationdate><title>Radiation-driven Turbulent Accretion onto Massive Black Holes</title><author>Park, KwangHo ; Wise, John H. ; Bogdanovi, Tamara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-339b23711b8e23a901f8c681f232845e9ddafe179858910de092e0c2f95d07723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accretion</topic><topic>ACCRETION DISKS</topic><topic>accretion, accretion disks</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>black hole physics</topic><topic>BLACK HOLES</topic><topic>Cold gas</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>COSMIC GASES</topic><topic>DENSITY</topic><topic>Deposition</topic><topic>ECOSYSTEMS</topic><topic>ENERGY BALANCE</topic><topic>Energy budget</topic><topic>GALAXIES</topic><topic>Gas density</topic><topic>GAS FLOW</topic><topic>HYDRODYNAMIC MODEL</topic><topic>hydrodynamics</topic><topic>IONIZATION</topic><topic>Ionizing radiation</topic><topic>Kinetic energy</topic><topic>OSCILLATIONS</topic><topic>Outbursts</topic><topic>PERIODICITY</topic><topic>RADIANT HEAT TRANSFER</topic><topic>Radiation</topic><topic>radiative transfer</topic><topic>RESOLUTION</topic><topic>SIMULATION</topic><topic>Thermal energy</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>Two dimensional models</topic><topic>X RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, KwangHo</creatorcontrib><creatorcontrib>Wise, John H.</creatorcontrib><creatorcontrib>Bogdanovi, Tamara</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, KwangHo</au><au>Wise, John H.</au><au>Bogdanovi, Tamara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-driven Turbulent Accretion onto Massive Black Holes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-09-20</date><risdate>2017</risdate><volume>847</volume><issue>1</issue><spage>70</spage><pages>70-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa8729</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7835-7814</orcidid><orcidid>https://orcid.org/0000-0003-1173-8847</orcidid><orcidid>https://orcid.org/0000-0001-7973-5744</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-09, Vol.847 (1), p.70 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_aa8729 |
source | IOP Publishing Free Content |
subjects | Accretion ACCRETION DISKS accretion, accretion disks Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY black hole physics BLACK HOLES Cold gas Computational fluid dynamics Computer simulation COSMIC GASES DENSITY Deposition ECOSYSTEMS ENERGY BALANCE Energy budget GALAXIES Gas density GAS FLOW HYDRODYNAMIC MODEL hydrodynamics IONIZATION Ionizing radiation Kinetic energy OSCILLATIONS Outbursts PERIODICITY RADIANT HEAT TRANSFER Radiation radiative transfer RESOLUTION SIMULATION Thermal energy THREE-DIMENSIONAL CALCULATIONS TURBULENCE Turbulent flow Two dimensional models X RADIATION |
title | Radiation-driven Turbulent Accretion onto Massive Black Holes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-driven%20Turbulent%20Accretion%20onto%20Massive%20Black%20Holes&rft.jtitle=The%20Astrophysical%20journal&rft.au=Park,%20KwangHo&rft.date=2017-09-20&rft.volume=847&rft.issue=1&rft.spage=70&rft.pages=70-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa8729&rft_dat=%3Cproquest_O3W%3E2365885927%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365885927&rft_id=info:pmid/&rfr_iscdi=true |