NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning

Differentiating between real transit events and false-positive signals in photometric time-series data is a bottleneck in the identification of transiting exoplanets, particularly long-period planets. This differentiation typically requires visual inspection of a large number of transit-like signals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2024-09, Vol.168 (3), p.100
Hauptverfasser: Tardugno Poleo, Valentina, Eisner, Nora, Hogg, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 100
container_title The Astronomical journal
container_volume 168
creator Tardugno Poleo, Valentina
Eisner, Nora
Hogg, David W.
description Differentiating between real transit events and false-positive signals in photometric time-series data is a bottleneck in the identification of transiting exoplanets, particularly long-period planets. This differentiation typically requires visual inspection of a large number of transit-like signals to rule out instrumental and astrophysical false positives that mimic planetary transit signals. We build a one-dimensional convolutional neural network (CNN) to separate eclipsing binaries and other false positives from potential planet candidates, reducing the number of light curves that require human vetting. Our CNN is trained using the TESS light curves that were identified by Planet Hunters citizen scientists as likely containing a transit. We also include the background flux and centroid information. The light curves are visually inspected and labeled by project scientists and are minimally preprocessed, with only normalization and data augmentation taking place before training. The median percentage of contaminants flagged across the test sectors is 18% with a maximum of 37% and a minimum of 10%. Our model keeps 100% of the planets for 16 of the 18 test sectors, while incorrectly flagging one planet candidate (0.3%) for one sector and two (0.6%) for the remaining sector. Our method shows potential to reduce the number of light curves requiring manual vetting by up to a third with minimal misclassification of planet candidates.
doi_str_mv 10.3847/1538-3881/ad5f29
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_3881_ad5f29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_535a8026d9e646cfa72bc128c9ef5253</doaj_id><sourcerecordid>3087329999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-8239b0b2280cf852e264291e5080ec896e92015a0f64e3d307366954bad2f6203</originalsourceid><addsrcrecordid>eNp9kUFPGzEQRi3USk1p7z1aoke2jMdrx-6tQqEgBYogPVuO1wZHyTrYG1D_fR0W0QuqL5ZG73sezxDyhcE3rtrpCRNcNVwpdmI7EVAfkMlr6R2ZAEDbSBTyA_lYygqAMQXthNxcpeF6ba9mi-_0xm_SY-zv6JldF0-vU4lDfPSFhpw2tFK9H-j5rh98LnQxu72lT3G4p5fW3cfe07m3ua_xT-R92As-v9yH5PfZbHF63sx__bw4_TFvHCo5NAq5XsISUYELSqBH2aJmXoAC75SWXiMwYSHI1vOOw5RLqUW7tB0GicAPycXo7ZJdmW2OG5v_mGSjeS6kfGdsHqJbeyO4sApQdtrLVrpgp7h0DJXTPggUvLqORtc2p4edL4NZpV3ua_uGg5py1PVUCkbK5VRK9uH1VQZmvwWzH7nZj9yMW6iR4zES0_af8z_41zfw-hsmK1hzYLZd4H8BZBSRvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087329999</pqid></control><display><type>article</type><title>NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tardugno Poleo, Valentina ; Eisner, Nora ; Hogg, David W.</creator><creatorcontrib>Tardugno Poleo, Valentina ; Eisner, Nora ; Hogg, David W.</creatorcontrib><description>Differentiating between real transit events and false-positive signals in photometric time-series data is a bottleneck in the identification of transiting exoplanets, particularly long-period planets. This differentiation typically requires visual inspection of a large number of transit-like signals to rule out instrumental and astrophysical false positives that mimic planetary transit signals. We build a one-dimensional convolutional neural network (CNN) to separate eclipsing binaries and other false positives from potential planet candidates, reducing the number of light curves that require human vetting. Our CNN is trained using the TESS light curves that were identified by Planet Hunters citizen scientists as likely containing a transit. We also include the background flux and centroid information. The light curves are visually inspected and labeled by project scientists and are minimally preprocessed, with only normalization and data augmentation taking place before training. The median percentage of contaminants flagged across the test sectors is 18% with a maximum of 37% and a minimum of 10%. Our model keeps 100% of the planets for 16 of the 18 test sectors, while incorrectly flagging one planet candidate (0.3%) for one sector and two (0.6%) for the remaining sector. Our method shows potential to reduce the number of light curves requiring manual vetting by up to a third with minimal misclassification of planet candidates.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/ad5f29</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Artificial neural networks ; Centroids ; Contaminants ; Convolutional neural networks ; Data augmentation ; Eclipsing binary stars ; Exoplanet detection methods ; Exoplanets ; Extrasolar planets ; Inspection ; Light curve ; Light curve classification ; Light curves ; Machine learning ; Neural networks ; Planet detection ; Planets ; Scientists ; Transit</subject><ispartof>The Astronomical journal, 2024-09, Vol.168 (3), p.100</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-8239b0b2280cf852e264291e5080ec896e92015a0f64e3d307366954bad2f6203</cites><orcidid>0000-0002-9138-9028 ; 0000-0003-2866-9403 ; 0009-0002-3883-7490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/ad5f29/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Tardugno Poleo, Valentina</creatorcontrib><creatorcontrib>Eisner, Nora</creatorcontrib><creatorcontrib>Hogg, David W.</creatorcontrib><title>NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>Differentiating between real transit events and false-positive signals in photometric time-series data is a bottleneck in the identification of transiting exoplanets, particularly long-period planets. This differentiation typically requires visual inspection of a large number of transit-like signals to rule out instrumental and astrophysical false positives that mimic planetary transit signals. We build a one-dimensional convolutional neural network (CNN) to separate eclipsing binaries and other false positives from potential planet candidates, reducing the number of light curves that require human vetting. Our CNN is trained using the TESS light curves that were identified by Planet Hunters citizen scientists as likely containing a transit. We also include the background flux and centroid information. The light curves are visually inspected and labeled by project scientists and are minimally preprocessed, with only normalization and data augmentation taking place before training. The median percentage of contaminants flagged across the test sectors is 18% with a maximum of 37% and a minimum of 10%. Our model keeps 100% of the planets for 16 of the 18 test sectors, while incorrectly flagging one planet candidate (0.3%) for one sector and two (0.6%) for the remaining sector. Our method shows potential to reduce the number of light curves requiring manual vetting by up to a third with minimal misclassification of planet candidates.</description><subject>Artificial neural networks</subject><subject>Centroids</subject><subject>Contaminants</subject><subject>Convolutional neural networks</subject><subject>Data augmentation</subject><subject>Eclipsing binary stars</subject><subject>Exoplanet detection methods</subject><subject>Exoplanets</subject><subject>Extrasolar planets</subject><subject>Inspection</subject><subject>Light curve</subject><subject>Light curve classification</subject><subject>Light curves</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Planet detection</subject><subject>Planets</subject><subject>Scientists</subject><subject>Transit</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFPGzEQRi3USk1p7z1aoke2jMdrx-6tQqEgBYogPVuO1wZHyTrYG1D_fR0W0QuqL5ZG73sezxDyhcE3rtrpCRNcNVwpdmI7EVAfkMlr6R2ZAEDbSBTyA_lYygqAMQXthNxcpeF6ba9mi-_0xm_SY-zv6JldF0-vU4lDfPSFhpw2tFK9H-j5rh98LnQxu72lT3G4p5fW3cfe07m3ua_xT-R92As-v9yH5PfZbHF63sx__bw4_TFvHCo5NAq5XsISUYELSqBH2aJmXoAC75SWXiMwYSHI1vOOw5RLqUW7tB0GicAPycXo7ZJdmW2OG5v_mGSjeS6kfGdsHqJbeyO4sApQdtrLVrpgp7h0DJXTPggUvLqORtc2p4edL4NZpV3ua_uGg5py1PVUCkbK5VRK9uH1VQZmvwWzH7nZj9yMW6iR4zES0_af8z_41zfw-hsmK1hzYLZd4H8BZBSRvA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Tardugno Poleo, Valentina</creator><creator>Eisner, Nora</creator><creator>Hogg, David W.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9138-9028</orcidid><orcidid>https://orcid.org/0000-0003-2866-9403</orcidid><orcidid>https://orcid.org/0009-0002-3883-7490</orcidid></search><sort><creationdate>20240901</creationdate><title>NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning</title><author>Tardugno Poleo, Valentina ; Eisner, Nora ; Hogg, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-8239b0b2280cf852e264291e5080ec896e92015a0f64e3d307366954bad2f6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Centroids</topic><topic>Contaminants</topic><topic>Convolutional neural networks</topic><topic>Data augmentation</topic><topic>Eclipsing binary stars</topic><topic>Exoplanet detection methods</topic><topic>Exoplanets</topic><topic>Extrasolar planets</topic><topic>Inspection</topic><topic>Light curve</topic><topic>Light curve classification</topic><topic>Light curves</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Planet detection</topic><topic>Planets</topic><topic>Scientists</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tardugno Poleo, Valentina</creatorcontrib><creatorcontrib>Eisner, Nora</creatorcontrib><creatorcontrib>Hogg, David W.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tardugno Poleo, Valentina</au><au>Eisner, Nora</au><au>Hogg, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>168</volume><issue>3</issue><spage>100</spage><pages>100-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>Differentiating between real transit events and false-positive signals in photometric time-series data is a bottleneck in the identification of transiting exoplanets, particularly long-period planets. This differentiation typically requires visual inspection of a large number of transit-like signals to rule out instrumental and astrophysical false positives that mimic planetary transit signals. We build a one-dimensional convolutional neural network (CNN) to separate eclipsing binaries and other false positives from potential planet candidates, reducing the number of light curves that require human vetting. Our CNN is trained using the TESS light curves that were identified by Planet Hunters citizen scientists as likely containing a transit. We also include the background flux and centroid information. The light curves are visually inspected and labeled by project scientists and are minimally preprocessed, with only normalization and data augmentation taking place before training. The median percentage of contaminants flagged across the test sectors is 18% with a maximum of 37% and a minimum of 10%. Our model keeps 100% of the planets for 16 of the 18 test sectors, while incorrectly flagging one planet candidate (0.3%) for one sector and two (0.6%) for the remaining sector. Our method shows potential to reduce the number of light curves requiring manual vetting by up to a third with minimal misclassification of planet candidates.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/ad5f29</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9138-9028</orcidid><orcidid>https://orcid.org/0000-0003-2866-9403</orcidid><orcidid>https://orcid.org/0009-0002-3883-7490</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2024-09, Vol.168 (3), p.100
issn 0004-6256
1538-3881
language eng
recordid cdi_crossref_primary_10_3847_1538_3881_ad5f29
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Artificial neural networks
Centroids
Contaminants
Convolutional neural networks
Data augmentation
Eclipsing binary stars
Exoplanet detection methods
Exoplanets
Extrasolar planets
Inspection
Light curve
Light curve classification
Light curves
Machine learning
Neural networks
Planet detection
Planets
Scientists
Transit
title NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NotPlaNET:%20Removing%20False%20Positives%20from%20Planet%20Hunters%20TESS%20with%20Machine%20Learning&rft.jtitle=The%20Astronomical%20journal&rft.au=Tardugno%20Poleo,%20Valentina&rft.date=2024-09-01&rft.volume=168&rft.issue=3&rft.spage=100&rft.pages=100-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/ad5f29&rft_dat=%3Cproquest_cross%3E3087329999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087329999&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_535a8026d9e646cfa72bc128c9ef5253&rfr_iscdi=true