Estimating the Ultraviolet Emission of M Dwarfs with Exoplanets from Ca ii and Hα
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planet's host star. This wavelength regi...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2020-12, Vol.160 (6), p.269 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 269 |
container_title | The Astronomical journal |
container_volume | 160 |
creator | Melbourne, Katherine Youngblood, Allison France, Kevin Froning, C. S. Pineda, J. Sebastian Shkolnik, Evgenya L. Wilson, David J. Wood, Brian E. Basu, Sarbani Roberge, Aki Schlieder, Joshua E. Cauley, P. Wilson Loyd, R. O. Parke Newton, Elisabeth R. Schneider, Adam Arulanantham, Nicole Berta-Thompson, Zachory Brown, Alexander Buccino, Andrea P. Kempton, Eliza Linsky, Jeffrey L. Logsdon, Sarah E. Mauas, Pablo Pagano, Isabella Peacock, Sarah Redfield, Seth Rugheimer, Sarah Schneider, P. Christian Teal, D. J. Tian, Feng Tilipman, Dennis Vieytes, Mariela |
description | M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planet's host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength-dependent absorption cross sections that peak in the UV (900–3200 Å). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between noncontemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly observed optical chromospheric activity indices—Hα equivalent widths and log(10) L(Hα)/L(bol), and the Mount Wilson Ca ii H&K S and R'(HK) indices—using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200 and 2800 Å. Our results show a correlation between UV emission-line luminosity normalized to the stellar bolometric luminosity and Ca ii R'(HK) with standard deviations of 0.31–0.61 dex (factors of ∼2–4) about the best-fit lines. We also find correlations between normalized UV line luminosity and Hα log(10) L(Hα)/L(bol) and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available. |
doi_str_mv | 10.3847/1538-3881/abbf5c |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_3881_abbf5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463689533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-989e4dfe6322c8e687940f62ba1fb842c305d1c9d3d26a6215b1d3d40447294c3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWKt3Dx4CXl3Nv02To9RqBUUQPYdsNrEpbVKTaPWxfBGfyS0r9uRphplvvpn5AXCM0TkVbHSBayoqKgS-0E3jarMDBn-lXTBACLGKk5rvg4Oc5whhLBAbgMdJLn6piw8vsMwsfF6UpN99XNgCJ0ufs48BRgfv4dVaJ5fh2pcZnHzE1UIHWzJ0KS7hWEPvoQ4tnH5_HYI9pxfZHv3GIXi-njyNp9Xdw83t-PKuMpTIUkkhLWud5ZQQIywXI8mQ46TR2DWCEUNR3WIjW9oSrjnBdYO7nCHGRkQyQ4fgtPeN3QsqG1-smZkYgjVFEYowZUxuVasUX99sLmoe31LoDlOEccqFrCntVKhXmRRzTtapVeqwpE-FkdrwVRuYagNT9Xy7kZN-JOisVSipM0QEd2SRJBvHs77t42q78l-3H_07g48</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463689533</pqid></control><display><type>article</type><title>Estimating the Ultraviolet Emission of M Dwarfs with Exoplanets from Ca ii and Hα</title><source>IOP Publishing Free Content</source><creator>Melbourne, Katherine ; Youngblood, Allison ; France, Kevin ; Froning, C. S. ; Pineda, J. Sebastian ; Shkolnik, Evgenya L. ; Wilson, David J. ; Wood, Brian E. ; Basu, Sarbani ; Roberge, Aki ; Schlieder, Joshua E. ; Cauley, P. Wilson ; Loyd, R. O. Parke ; Newton, Elisabeth R. ; Schneider, Adam ; Arulanantham, Nicole ; Berta-Thompson, Zachory ; Brown, Alexander ; Buccino, Andrea P. ; Kempton, Eliza ; Linsky, Jeffrey L. ; Logsdon, Sarah E. ; Mauas, Pablo ; Pagano, Isabella ; Peacock, Sarah ; Redfield, Seth ; Rugheimer, Sarah ; Schneider, P. Christian ; Teal, D. J. ; Tian, Feng ; Tilipman, Dennis ; Vieytes, Mariela</creator><creatorcontrib>Melbourne, Katherine ; Youngblood, Allison ; France, Kevin ; Froning, C. S. ; Pineda, J. Sebastian ; Shkolnik, Evgenya L. ; Wilson, David J. ; Wood, Brian E. ; Basu, Sarbani ; Roberge, Aki ; Schlieder, Joshua E. ; Cauley, P. Wilson ; Loyd, R. O. Parke ; Newton, Elisabeth R. ; Schneider, Adam ; Arulanantham, Nicole ; Berta-Thompson, Zachory ; Brown, Alexander ; Buccino, Andrea P. ; Kempton, Eliza ; Linsky, Jeffrey L. ; Logsdon, Sarah E. ; Mauas, Pablo ; Pagano, Isabella ; Peacock, Sarah ; Redfield, Seth ; Rugheimer, Sarah ; Schneider, P. Christian ; Teal, D. J. ; Tian, Feng ; Tilipman, Dennis ; Vieytes, Mariela</creatorcontrib><description>M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planet's host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength-dependent absorption cross sections that peak in the UV (900–3200 Å). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between noncontemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly observed optical chromospheric activity indices—Hα equivalent widths and log(10) L(Hα)/L(bol), and the Mount Wilson Ca ii H&K S and R'(HK) indices—using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200 and 2800 Å. Our results show a correlation between UV emission-line luminosity normalized to the stellar bolometric luminosity and Ca ii R'(HK) with standard deviations of 0.31–0.61 dex (factors of ∼2–4) about the best-fit lines. We also find correlations between normalized UV line luminosity and Hα log(10) L(Hα)/L(bol) and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available.</description><identifier>ISSN: 0004-6256</identifier><identifier>ISSN: 1538-3881</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/abbf5c</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>ABSORPTION ; Absorption cross sections ; Archives & records ; Astronomy ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BALMER LINES ; BOLOMETERS ; CALCIUM ; Chromospheric activity ; Correlation ; CORRELATIONS ; DWARF STARS ; EMISSION ; Emission lines ; ENERGY SPECTRA ; Estimation ; Evaluation ; Exoplanet atmospheres ; Extrasolar planets ; Fluxes ; H alpha line ; Hubble Space Telescope ; HYDROGEN ; LUMINOSITY ; M dwarf stars ; MOLECULES ; Optical observatories ; OXYGEN ; OZONE ; PHOTOCHEMISTRY ; PLANETARY ATMOSPHERES ; PLANETS ; Red dwarf stars ; SPACE ; Space telescopes ; Spectra ; Spectral energy distribution ; Stellar activity ; Stellar chromospheres ; TELESCOPES ; Ultraviolet emission ; Ultraviolet observatories ; ULTRAVIOLET RADIATION ; WAVELENGTHS</subject><ispartof>The Astronomical journal, 2020-12, Vol.160 (6), p.269</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright Determination: GOV_PERMITTED</rights><rights>Copyright IOP Publishing Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-989e4dfe6322c8e687940f62ba1fb842c305d1c9d3d26a6215b1d3d40447294c3</citedby><cites>FETCH-LOGICAL-c329t-989e4dfe6322c8e687940f62ba1fb842c305d1c9d3d26a6215b1d3d40447294c3</cites><orcidid>0000-0003-4150-841X ; 0000-0003-4446-3181 ; 0000-0002-7260-5821 ; 0000-0002-6294-5937 ; 0000-0001-5646-6668 ; 0000-0003-0873-0262 ; 0000-0002-4489-0135 ; 0000-0002-1002-3674 ; 0000-0001-8499-2892 ; 0000-0003-2631-5265 ; 0000-0001-9361-6629 ; 0000-0001-9667-9449 ; 0000-0002-9607-560X ; 0000-0001-5347-7062 ; 0000-0002-8423-6904 ; 0000-0002-6163-3472 ; 0000-0002-3321-4924 ; 0000-0003-2631-3905 ; 0000-0003-1620-7658 ; 0000-0002-1176-3391 ; 0000-0002-4998-0893 ; 0000-0002-2989-3725 ; 0000-0003-3786-3486 ; 0000-0001-9207-0564 ; 0000-0001-9573-4928 ; 0000-0002-1337-9051 ; 0000-0002-9632-9382 ; 0000-0002-1912-3057 ; 0000-0003-4615-8746 ; 0000-0002-5094-2245 ; 0000-0002-1046-025X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/abbf5c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38847,38869,53818,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/abbf5c$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/23013449$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Melbourne, Katherine</creatorcontrib><creatorcontrib>Youngblood, Allison</creatorcontrib><creatorcontrib>France, Kevin</creatorcontrib><creatorcontrib>Froning, C. S.</creatorcontrib><creatorcontrib>Pineda, J. Sebastian</creatorcontrib><creatorcontrib>Shkolnik, Evgenya L.</creatorcontrib><creatorcontrib>Wilson, David J.</creatorcontrib><creatorcontrib>Wood, Brian E.</creatorcontrib><creatorcontrib>Basu, Sarbani</creatorcontrib><creatorcontrib>Roberge, Aki</creatorcontrib><creatorcontrib>Schlieder, Joshua E.</creatorcontrib><creatorcontrib>Cauley, P. Wilson</creatorcontrib><creatorcontrib>Loyd, R. O. Parke</creatorcontrib><creatorcontrib>Newton, Elisabeth R.</creatorcontrib><creatorcontrib>Schneider, Adam</creatorcontrib><creatorcontrib>Arulanantham, Nicole</creatorcontrib><creatorcontrib>Berta-Thompson, Zachory</creatorcontrib><creatorcontrib>Brown, Alexander</creatorcontrib><creatorcontrib>Buccino, Andrea P.</creatorcontrib><creatorcontrib>Kempton, Eliza</creatorcontrib><creatorcontrib>Linsky, Jeffrey L.</creatorcontrib><creatorcontrib>Logsdon, Sarah E.</creatorcontrib><creatorcontrib>Mauas, Pablo</creatorcontrib><creatorcontrib>Pagano, Isabella</creatorcontrib><creatorcontrib>Peacock, Sarah</creatorcontrib><creatorcontrib>Redfield, Seth</creatorcontrib><creatorcontrib>Rugheimer, Sarah</creatorcontrib><creatorcontrib>Schneider, P. Christian</creatorcontrib><creatorcontrib>Teal, D. J.</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Tilipman, Dennis</creatorcontrib><creatorcontrib>Vieytes, Mariela</creatorcontrib><title>Estimating the Ultraviolet Emission of M Dwarfs with Exoplanets from Ca ii and Hα</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planet's host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength-dependent absorption cross sections that peak in the UV (900–3200 Å). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between noncontemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly observed optical chromospheric activity indices—Hα equivalent widths and log(10) L(Hα)/L(bol), and the Mount Wilson Ca ii H&K S and R'(HK) indices—using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200 and 2800 Å. Our results show a correlation between UV emission-line luminosity normalized to the stellar bolometric luminosity and Ca ii R'(HK) with standard deviations of 0.31–0.61 dex (factors of ∼2–4) about the best-fit lines. We also find correlations between normalized UV line luminosity and Hα log(10) L(Hα)/L(bol) and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available.</description><subject>ABSORPTION</subject><subject>Absorption cross sections</subject><subject>Archives & records</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BALMER LINES</subject><subject>BOLOMETERS</subject><subject>CALCIUM</subject><subject>Chromospheric activity</subject><subject>Correlation</subject><subject>CORRELATIONS</subject><subject>DWARF STARS</subject><subject>EMISSION</subject><subject>Emission lines</subject><subject>ENERGY SPECTRA</subject><subject>Estimation</subject><subject>Evaluation</subject><subject>Exoplanet atmospheres</subject><subject>Extrasolar planets</subject><subject>Fluxes</subject><subject>H alpha line</subject><subject>Hubble Space Telescope</subject><subject>HYDROGEN</subject><subject>LUMINOSITY</subject><subject>M dwarf stars</subject><subject>MOLECULES</subject><subject>Optical observatories</subject><subject>OXYGEN</subject><subject>OZONE</subject><subject>PHOTOCHEMISTRY</subject><subject>PLANETARY ATMOSPHERES</subject><subject>PLANETS</subject><subject>Red dwarf stars</subject><subject>SPACE</subject><subject>Space telescopes</subject><subject>Spectra</subject><subject>Spectral energy distribution</subject><subject>Stellar activity</subject><subject>Stellar chromospheres</subject><subject>TELESCOPES</subject><subject>Ultraviolet emission</subject><subject>Ultraviolet observatories</subject><subject>ULTRAVIOLET RADIATION</subject><subject>WAVELENGTHS</subject><issn>0004-6256</issn><issn>1538-3881</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp1kM9KAzEQxoMoWKt3Dx4CXl3Nv02To9RqBUUQPYdsNrEpbVKTaPWxfBGfyS0r9uRphplvvpn5AXCM0TkVbHSBayoqKgS-0E3jarMDBn-lXTBACLGKk5rvg4Oc5whhLBAbgMdJLn6piw8vsMwsfF6UpN99XNgCJ0ufs48BRgfv4dVaJ5fh2pcZnHzE1UIHWzJ0KS7hWEPvoQ4tnH5_HYI9pxfZHv3GIXi-njyNp9Xdw83t-PKuMpTIUkkhLWud5ZQQIywXI8mQ46TR2DWCEUNR3WIjW9oSrjnBdYO7nCHGRkQyQ4fgtPeN3QsqG1-smZkYgjVFEYowZUxuVasUX99sLmoe31LoDlOEccqFrCntVKhXmRRzTtapVeqwpE-FkdrwVRuYagNT9Xy7kZN-JOisVSipM0QEd2SRJBvHs77t42q78l-3H_07g48</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Melbourne, Katherine</creator><creator>Youngblood, Allison</creator><creator>France, Kevin</creator><creator>Froning, C. S.</creator><creator>Pineda, J. Sebastian</creator><creator>Shkolnik, Evgenya L.</creator><creator>Wilson, David J.</creator><creator>Wood, Brian E.</creator><creator>Basu, Sarbani</creator><creator>Roberge, Aki</creator><creator>Schlieder, Joshua E.</creator><creator>Cauley, P. Wilson</creator><creator>Loyd, R. O. Parke</creator><creator>Newton, Elisabeth R.</creator><creator>Schneider, Adam</creator><creator>Arulanantham, Nicole</creator><creator>Berta-Thompson, Zachory</creator><creator>Brown, Alexander</creator><creator>Buccino, Andrea P.</creator><creator>Kempton, Eliza</creator><creator>Linsky, Jeffrey L.</creator><creator>Logsdon, Sarah E.</creator><creator>Mauas, Pablo</creator><creator>Pagano, Isabella</creator><creator>Peacock, Sarah</creator><creator>Redfield, Seth</creator><creator>Rugheimer, Sarah</creator><creator>Schneider, P. Christian</creator><creator>Teal, D. J.</creator><creator>Tian, Feng</creator><creator>Tilipman, Dennis</creator><creator>Vieytes, Mariela</creator><general>The American Astronomical Society</general><general>American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society (AAS)</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4150-841X</orcidid><orcidid>https://orcid.org/0000-0003-4446-3181</orcidid><orcidid>https://orcid.org/0000-0002-7260-5821</orcidid><orcidid>https://orcid.org/0000-0002-6294-5937</orcidid><orcidid>https://orcid.org/0000-0001-5646-6668</orcidid><orcidid>https://orcid.org/0000-0003-0873-0262</orcidid><orcidid>https://orcid.org/0000-0002-4489-0135</orcidid><orcidid>https://orcid.org/0000-0002-1002-3674</orcidid><orcidid>https://orcid.org/0000-0001-8499-2892</orcidid><orcidid>https://orcid.org/0000-0003-2631-5265</orcidid><orcidid>https://orcid.org/0000-0001-9361-6629</orcidid><orcidid>https://orcid.org/0000-0001-9667-9449</orcidid><orcidid>https://orcid.org/0000-0002-9607-560X</orcidid><orcidid>https://orcid.org/0000-0001-5347-7062</orcidid><orcidid>https://orcid.org/0000-0002-8423-6904</orcidid><orcidid>https://orcid.org/0000-0002-6163-3472</orcidid><orcidid>https://orcid.org/0000-0002-3321-4924</orcidid><orcidid>https://orcid.org/0000-0003-2631-3905</orcidid><orcidid>https://orcid.org/0000-0003-1620-7658</orcidid><orcidid>https://orcid.org/0000-0002-1176-3391</orcidid><orcidid>https://orcid.org/0000-0002-4998-0893</orcidid><orcidid>https://orcid.org/0000-0002-2989-3725</orcidid><orcidid>https://orcid.org/0000-0003-3786-3486</orcidid><orcidid>https://orcid.org/0000-0001-9207-0564</orcidid><orcidid>https://orcid.org/0000-0001-9573-4928</orcidid><orcidid>https://orcid.org/0000-0002-1337-9051</orcidid><orcidid>https://orcid.org/0000-0002-9632-9382</orcidid><orcidid>https://orcid.org/0000-0002-1912-3057</orcidid><orcidid>https://orcid.org/0000-0003-4615-8746</orcidid><orcidid>https://orcid.org/0000-0002-5094-2245</orcidid><orcidid>https://orcid.org/0000-0002-1046-025X</orcidid></search><sort><creationdate>20201201</creationdate><title>Estimating the Ultraviolet Emission of M Dwarfs with Exoplanets from Ca ii and Hα</title><author>Melbourne, Katherine ; Youngblood, Allison ; France, Kevin ; Froning, C. S. ; Pineda, J. Sebastian ; Shkolnik, Evgenya L. ; Wilson, David J. ; Wood, Brian E. ; Basu, Sarbani ; Roberge, Aki ; Schlieder, Joshua E. ; Cauley, P. Wilson ; Loyd, R. O. Parke ; Newton, Elisabeth R. ; Schneider, Adam ; Arulanantham, Nicole ; Berta-Thompson, Zachory ; Brown, Alexander ; Buccino, Andrea P. ; Kempton, Eliza ; Linsky, Jeffrey L. ; Logsdon, Sarah E. ; Mauas, Pablo ; Pagano, Isabella ; Peacock, Sarah ; Redfield, Seth ; Rugheimer, Sarah ; Schneider, P. Christian ; Teal, D. J. ; Tian, Feng ; Tilipman, Dennis ; Vieytes, Mariela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-989e4dfe6322c8e687940f62ba1fb842c305d1c9d3d26a6215b1d3d40447294c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ABSORPTION</topic><topic>Absorption cross sections</topic><topic>Archives & records</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BALMER LINES</topic><topic>BOLOMETERS</topic><topic>CALCIUM</topic><topic>Chromospheric activity</topic><topic>Correlation</topic><topic>CORRELATIONS</topic><topic>DWARF STARS</topic><topic>EMISSION</topic><topic>Emission lines</topic><topic>ENERGY SPECTRA</topic><topic>Estimation</topic><topic>Evaluation</topic><topic>Exoplanet atmospheres</topic><topic>Extrasolar planets</topic><topic>Fluxes</topic><topic>H alpha line</topic><topic>Hubble Space Telescope</topic><topic>HYDROGEN</topic><topic>LUMINOSITY</topic><topic>M dwarf stars</topic><topic>MOLECULES</topic><topic>Optical observatories</topic><topic>OXYGEN</topic><topic>OZONE</topic><topic>PHOTOCHEMISTRY</topic><topic>PLANETARY ATMOSPHERES</topic><topic>PLANETS</topic><topic>Red dwarf stars</topic><topic>SPACE</topic><topic>Space telescopes</topic><topic>Spectra</topic><topic>Spectral energy distribution</topic><topic>Stellar activity</topic><topic>Stellar chromospheres</topic><topic>TELESCOPES</topic><topic>Ultraviolet emission</topic><topic>Ultraviolet observatories</topic><topic>ULTRAVIOLET RADIATION</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melbourne, Katherine</creatorcontrib><creatorcontrib>Youngblood, Allison</creatorcontrib><creatorcontrib>France, Kevin</creatorcontrib><creatorcontrib>Froning, C. S.</creatorcontrib><creatorcontrib>Pineda, J. Sebastian</creatorcontrib><creatorcontrib>Shkolnik, Evgenya L.</creatorcontrib><creatorcontrib>Wilson, David J.</creatorcontrib><creatorcontrib>Wood, Brian E.</creatorcontrib><creatorcontrib>Basu, Sarbani</creatorcontrib><creatorcontrib>Roberge, Aki</creatorcontrib><creatorcontrib>Schlieder, Joshua E.</creatorcontrib><creatorcontrib>Cauley, P. Wilson</creatorcontrib><creatorcontrib>Loyd, R. O. Parke</creatorcontrib><creatorcontrib>Newton, Elisabeth R.</creatorcontrib><creatorcontrib>Schneider, Adam</creatorcontrib><creatorcontrib>Arulanantham, Nicole</creatorcontrib><creatorcontrib>Berta-Thompson, Zachory</creatorcontrib><creatorcontrib>Brown, Alexander</creatorcontrib><creatorcontrib>Buccino, Andrea P.</creatorcontrib><creatorcontrib>Kempton, Eliza</creatorcontrib><creatorcontrib>Linsky, Jeffrey L.</creatorcontrib><creatorcontrib>Logsdon, Sarah E.</creatorcontrib><creatorcontrib>Mauas, Pablo</creatorcontrib><creatorcontrib>Pagano, Isabella</creatorcontrib><creatorcontrib>Peacock, Sarah</creatorcontrib><creatorcontrib>Redfield, Seth</creatorcontrib><creatorcontrib>Rugheimer, Sarah</creatorcontrib><creatorcontrib>Schneider, P. Christian</creatorcontrib><creatorcontrib>Teal, D. J.</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Tilipman, Dennis</creatorcontrib><creatorcontrib>Vieytes, Mariela</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Melbourne, Katherine</au><au>Youngblood, Allison</au><au>France, Kevin</au><au>Froning, C. S.</au><au>Pineda, J. Sebastian</au><au>Shkolnik, Evgenya L.</au><au>Wilson, David J.</au><au>Wood, Brian E.</au><au>Basu, Sarbani</au><au>Roberge, Aki</au><au>Schlieder, Joshua E.</au><au>Cauley, P. Wilson</au><au>Loyd, R. O. Parke</au><au>Newton, Elisabeth R.</au><au>Schneider, Adam</au><au>Arulanantham, Nicole</au><au>Berta-Thompson, Zachory</au><au>Brown, Alexander</au><au>Buccino, Andrea P.</au><au>Kempton, Eliza</au><au>Linsky, Jeffrey L.</au><au>Logsdon, Sarah E.</au><au>Mauas, Pablo</au><au>Pagano, Isabella</au><au>Peacock, Sarah</au><au>Redfield, Seth</au><au>Rugheimer, Sarah</au><au>Schneider, P. Christian</au><au>Teal, D. J.</au><au>Tian, Feng</au><au>Tilipman, Dennis</au><au>Vieytes, Mariela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Ultraviolet Emission of M Dwarfs with Exoplanets from Ca ii and Hα</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>160</volume><issue>6</issue><spage>269</spage><pages>269-</pages><issn>0004-6256</issn><issn>1538-3881</issn><eissn>1538-3881</eissn><abstract>M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planet's host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength-dependent absorption cross sections that peak in the UV (900–3200 Å). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between noncontemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly observed optical chromospheric activity indices—Hα equivalent widths and log(10) L(Hα)/L(bol), and the Mount Wilson Ca ii H&K S and R'(HK) indices—using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200 and 2800 Å. Our results show a correlation between UV emission-line luminosity normalized to the stellar bolometric luminosity and Ca ii R'(HK) with standard deviations of 0.31–0.61 dex (factors of ∼2–4) about the best-fit lines. We also find correlations between normalized UV line luminosity and Hα log(10) L(Hα)/L(bol) and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/abbf5c</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4150-841X</orcidid><orcidid>https://orcid.org/0000-0003-4446-3181</orcidid><orcidid>https://orcid.org/0000-0002-7260-5821</orcidid><orcidid>https://orcid.org/0000-0002-6294-5937</orcidid><orcidid>https://orcid.org/0000-0001-5646-6668</orcidid><orcidid>https://orcid.org/0000-0003-0873-0262</orcidid><orcidid>https://orcid.org/0000-0002-4489-0135</orcidid><orcidid>https://orcid.org/0000-0002-1002-3674</orcidid><orcidid>https://orcid.org/0000-0001-8499-2892</orcidid><orcidid>https://orcid.org/0000-0003-2631-5265</orcidid><orcidid>https://orcid.org/0000-0001-9361-6629</orcidid><orcidid>https://orcid.org/0000-0001-9667-9449</orcidid><orcidid>https://orcid.org/0000-0002-9607-560X</orcidid><orcidid>https://orcid.org/0000-0001-5347-7062</orcidid><orcidid>https://orcid.org/0000-0002-8423-6904</orcidid><orcidid>https://orcid.org/0000-0002-6163-3472</orcidid><orcidid>https://orcid.org/0000-0002-3321-4924</orcidid><orcidid>https://orcid.org/0000-0003-2631-3905</orcidid><orcidid>https://orcid.org/0000-0003-1620-7658</orcidid><orcidid>https://orcid.org/0000-0002-1176-3391</orcidid><orcidid>https://orcid.org/0000-0002-4998-0893</orcidid><orcidid>https://orcid.org/0000-0002-2989-3725</orcidid><orcidid>https://orcid.org/0000-0003-3786-3486</orcidid><orcidid>https://orcid.org/0000-0001-9207-0564</orcidid><orcidid>https://orcid.org/0000-0001-9573-4928</orcidid><orcidid>https://orcid.org/0000-0002-1337-9051</orcidid><orcidid>https://orcid.org/0000-0002-9632-9382</orcidid><orcidid>https://orcid.org/0000-0002-1912-3057</orcidid><orcidid>https://orcid.org/0000-0003-4615-8746</orcidid><orcidid>https://orcid.org/0000-0002-5094-2245</orcidid><orcidid>https://orcid.org/0000-0002-1046-025X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2020-12, Vol.160 (6), p.269 |
issn | 0004-6256 1538-3881 1538-3881 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_3881_abbf5c |
source | IOP Publishing Free Content |
subjects | ABSORPTION Absorption cross sections Archives & records Astronomy Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BALMER LINES BOLOMETERS CALCIUM Chromospheric activity Correlation CORRELATIONS DWARF STARS EMISSION Emission lines ENERGY SPECTRA Estimation Evaluation Exoplanet atmospheres Extrasolar planets Fluxes H alpha line Hubble Space Telescope HYDROGEN LUMINOSITY M dwarf stars MOLECULES Optical observatories OXYGEN OZONE PHOTOCHEMISTRY PLANETARY ATMOSPHERES PLANETS Red dwarf stars SPACE Space telescopes Spectra Spectral energy distribution Stellar activity Stellar chromospheres TELESCOPES Ultraviolet emission Ultraviolet observatories ULTRAVIOLET RADIATION WAVELENGTHS |
title | Estimating the Ultraviolet Emission of M Dwarfs with Exoplanets from Ca ii and Hα |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Ultraviolet%20Emission%20of%20M%20Dwarfs%20with%20Exoplanets%20from%20Ca%20ii%20and%20H%CE%B1&rft.jtitle=The%20Astronomical%20journal&rft.au=Melbourne,%20Katherine&rft.date=2020-12-01&rft.volume=160&rft.issue=6&rft.spage=269&rft.pages=269-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/abbf5c&rft_dat=%3Cproquest_O3W%3E2463689533%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463689533&rft_id=info:pmid/&rfr_iscdi=true |