Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e

Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2020-07, Vol.160 (1), p.23
Hauptverfasser: Knapp, Mary, Seager, Sara, Demory, Brice-Olivier, Krishnamurthy, Akshata, Smith, Matthew W., Pong, Christopher M., Bailey, Vanessa P., Donner, Amanda, Pasquale, Peter Di, Campuzano, Brian, Smith, Colin, Luu, Jason, Babuscia, Alessandra, Bocchino, Jr, Robert L., Loveland, Jessica, Colley, Cody, Gedenk, Tobias, Kulkarni, Tejas, Hughes, Kyle, White, Mary, Krajewski, Joel, Fesq, Lorraine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 23
container_title The Astronomical journal
container_volume 160
creator Knapp, Mary
Seager, Sara
Demory, Brice-Olivier
Krishnamurthy, Akshata
Smith, Matthew W.
Pong, Christopher M.
Bailey, Vanessa P.
Donner, Amanda
Pasquale, Peter Di
Campuzano, Brian
Smith, Colin
Luu, Jason
Babuscia, Alessandra
Bocchino, Jr, Robert L.
Loveland, Jessica
Colley, Cody
Gedenk, Tobias
Kulkarni, Tejas
Hughes, Kyle
White, Mary
Krajewski, Joel
Fesq, Lorraine
description Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stability thermal control. ASTERIA demonstrated 0 5 rms pointing stability and 10 mK thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in 2017 August and deployed from the International Space Station in 2017 November. During the prime mission (2017 November-2018 February) and the first extended mission that followed (2018 March-2018 May), ASTERIA conducted opportunistic science observations, which included the collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct complementary metal-oxide semiconductor (CMOS) detector column-dependent gain variations. A Markov Chain Monte Carlo approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2 ), measuring a transit depth of 374 170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.
doi_str_mv 10.3847/1538-3881/ab8bcc
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_3881_ab8bcc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413650690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-5679a63293fa882119e21c18239a5dd0f24785fca809e6a8bfaa392aa77c4a523</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd3j4FdrcuPpk29jTrdYDBx8-QhfM3SLcM1NemU_fd2VPQinj54ed73gweha0puuYzTIRVcRlxKOoRCFlqfoN5PdIp6hJA4SphIztFFCFtCKJUk7qHXe7NzVWg8NLZa44ldb6LaG22DdRV-2rjG7UzjD_jTNhsMON8XZgHNHR4tluPn6QjPi2D8R9tuV7ArsRA4h0p7i80lOivhLZir79tHLw_jZT6JZvPHaT6aRZqnsolEkmaQcJbxEqRklGaGUU0l4xmI1YqULE6lKDVIkpkEZFEC8IwBpKmOQTDeR4Nut_bufW9Co7Zu76v2pWIx5YkgSUZainSU9i4Eb0pVe7sDf1CUqKNCdfSljr5Up7Ct3HQV6-rfzX_wwR84bBVNiKKKcVWvSv4FWid9zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413650690</pqid></control><display><type>article</type><title>Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e</title><source>IOP Publishing Free Content</source><creator>Knapp, Mary ; Seager, Sara ; Demory, Brice-Olivier ; Krishnamurthy, Akshata ; Smith, Matthew W. ; Pong, Christopher M. ; Bailey, Vanessa P. ; Donner, Amanda ; Pasquale, Peter Di ; Campuzano, Brian ; Smith, Colin ; Luu, Jason ; Babuscia, Alessandra ; Bocchino, Jr, Robert L. ; Loveland, Jessica ; Colley, Cody ; Gedenk, Tobias ; Kulkarni, Tejas ; Hughes, Kyle ; White, Mary ; Krajewski, Joel ; Fesq, Lorraine</creator><creatorcontrib>Knapp, Mary ; Seager, Sara ; Demory, Brice-Olivier ; Krishnamurthy, Akshata ; Smith, Matthew W. ; Pong, Christopher M. ; Bailey, Vanessa P. ; Donner, Amanda ; Pasquale, Peter Di ; Campuzano, Brian ; Smith, Colin ; Luu, Jason ; Babuscia, Alessandra ; Bocchino, Jr, Robert L. ; Loveland, Jessica ; Colley, Cody ; Gedenk, Tobias ; Kulkarni, Tejas ; Hughes, Kyle ; White, Mary ; Krajewski, Joel ; Fesq, Lorraine</creatorcontrib><description>Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stability thermal control. ASTERIA demonstrated 0 5 rms pointing stability and 10 mK thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in 2017 August and deployed from the International Space Station in 2017 November. During the prime mission (2017 November-2018 February) and the first extended mission that followed (2018 March-2018 May), ASTERIA conducted opportunistic science observations, which included the collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct complementary metal-oxide semiconductor (CMOS) detector column-dependent gain variations. A Markov Chain Monte Carlo approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2 ), measuring a transit depth of 374 170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/ab8bcc</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Astronomy ; Astrophysics ; Broad band photometry ; CMOS ; Computer simulation ; Control stability ; Cubesat ; Exoplanet astronomy ; Exoplanet detection methods ; Exoplanets ; Extrasolar planets ; International Space Station ; Markov chains ; Noise reduction ; Photometric observations ; Photometry ; Planetary systems ; Space missions ; Space observatories ; Space stations ; Space telescopes ; Spacecraft ; Super Earths ; Transit ; Transit photometry</subject><ispartof>The Astronomical journal, 2020-07, Vol.160 (1), p.23</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-5679a63293fa882119e21c18239a5dd0f24785fca809e6a8bfaa392aa77c4a523</citedby><cites>FETCH-LOGICAL-c378t-5679a63293fa882119e21c18239a5dd0f24785fca809e6a8bfaa392aa77c4a523</cites><orcidid>0000-0003-0103-8820 ; 0000-0002-5407-2806 ; 0000-0002-9355-5165 ; 0000-0002-5318-7660 ; 0000-0002-8781-2743 ; 0000-0002-6892-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/ab8bcc/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/ab8bcc$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Knapp, Mary</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><creatorcontrib>Demory, Brice-Olivier</creatorcontrib><creatorcontrib>Krishnamurthy, Akshata</creatorcontrib><creatorcontrib>Smith, Matthew W.</creatorcontrib><creatorcontrib>Pong, Christopher M.</creatorcontrib><creatorcontrib>Bailey, Vanessa P.</creatorcontrib><creatorcontrib>Donner, Amanda</creatorcontrib><creatorcontrib>Pasquale, Peter Di</creatorcontrib><creatorcontrib>Campuzano, Brian</creatorcontrib><creatorcontrib>Smith, Colin</creatorcontrib><creatorcontrib>Luu, Jason</creatorcontrib><creatorcontrib>Babuscia, Alessandra</creatorcontrib><creatorcontrib>Bocchino, Jr, Robert L.</creatorcontrib><creatorcontrib>Loveland, Jessica</creatorcontrib><creatorcontrib>Colley, Cody</creatorcontrib><creatorcontrib>Gedenk, Tobias</creatorcontrib><creatorcontrib>Kulkarni, Tejas</creatorcontrib><creatorcontrib>Hughes, Kyle</creatorcontrib><creatorcontrib>White, Mary</creatorcontrib><creatorcontrib>Krajewski, Joel</creatorcontrib><creatorcontrib>Fesq, Lorraine</creatorcontrib><title>Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stability thermal control. ASTERIA demonstrated 0 5 rms pointing stability and 10 mK thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in 2017 August and deployed from the International Space Station in 2017 November. During the prime mission (2017 November-2018 February) and the first extended mission that followed (2018 March-2018 May), ASTERIA conducted opportunistic science observations, which included the collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct complementary metal-oxide semiconductor (CMOS) detector column-dependent gain variations. A Markov Chain Monte Carlo approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2 ), measuring a transit depth of 374 170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Broad band photometry</subject><subject>CMOS</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Cubesat</subject><subject>Exoplanet astronomy</subject><subject>Exoplanet detection methods</subject><subject>Exoplanets</subject><subject>Extrasolar planets</subject><subject>International Space Station</subject><subject>Markov chains</subject><subject>Noise reduction</subject><subject>Photometric observations</subject><subject>Photometry</subject><subject>Planetary systems</subject><subject>Space missions</subject><subject>Space observatories</subject><subject>Space stations</subject><subject>Space telescopes</subject><subject>Spacecraft</subject><subject>Super Earths</subject><subject>Transit</subject><subject>Transit photometry</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd3j4FdrcuPpk29jTrdYDBx8-QhfM3SLcM1NemU_fd2VPQinj54ed73gweha0puuYzTIRVcRlxKOoRCFlqfoN5PdIp6hJA4SphIztFFCFtCKJUk7qHXe7NzVWg8NLZa44ldb6LaG22DdRV-2rjG7UzjD_jTNhsMON8XZgHNHR4tluPn6QjPi2D8R9tuV7ArsRA4h0p7i80lOivhLZir79tHLw_jZT6JZvPHaT6aRZqnsolEkmaQcJbxEqRklGaGUU0l4xmI1YqULE6lKDVIkpkEZFEC8IwBpKmOQTDeR4Nut_bufW9Co7Zu76v2pWIx5YkgSUZainSU9i4Eb0pVe7sDf1CUqKNCdfSljr5Up7Ct3HQV6-rfzX_wwR84bBVNiKKKcVWvSv4FWid9zA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Knapp, Mary</creator><creator>Seager, Sara</creator><creator>Demory, Brice-Olivier</creator><creator>Krishnamurthy, Akshata</creator><creator>Smith, Matthew W.</creator><creator>Pong, Christopher M.</creator><creator>Bailey, Vanessa P.</creator><creator>Donner, Amanda</creator><creator>Pasquale, Peter Di</creator><creator>Campuzano, Brian</creator><creator>Smith, Colin</creator><creator>Luu, Jason</creator><creator>Babuscia, Alessandra</creator><creator>Bocchino, Jr, Robert L.</creator><creator>Loveland, Jessica</creator><creator>Colley, Cody</creator><creator>Gedenk, Tobias</creator><creator>Kulkarni, Tejas</creator><creator>Hughes, Kyle</creator><creator>White, Mary</creator><creator>Krajewski, Joel</creator><creator>Fesq, Lorraine</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0103-8820</orcidid><orcidid>https://orcid.org/0000-0002-5407-2806</orcidid><orcidid>https://orcid.org/0000-0002-9355-5165</orcidid><orcidid>https://orcid.org/0000-0002-5318-7660</orcidid><orcidid>https://orcid.org/0000-0002-8781-2743</orcidid><orcidid>https://orcid.org/0000-0002-6892-6948</orcidid></search><sort><creationdate>20200701</creationdate><title>Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e</title><author>Knapp, Mary ; Seager, Sara ; Demory, Brice-Olivier ; Krishnamurthy, Akshata ; Smith, Matthew W. ; Pong, Christopher M. ; Bailey, Vanessa P. ; Donner, Amanda ; Pasquale, Peter Di ; Campuzano, Brian ; Smith, Colin ; Luu, Jason ; Babuscia, Alessandra ; Bocchino, Jr, Robert L. ; Loveland, Jessica ; Colley, Cody ; Gedenk, Tobias ; Kulkarni, Tejas ; Hughes, Kyle ; White, Mary ; Krajewski, Joel ; Fesq, Lorraine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-5679a63293fa882119e21c18239a5dd0f24785fca809e6a8bfaa392aa77c4a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Broad band photometry</topic><topic>CMOS</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Cubesat</topic><topic>Exoplanet astronomy</topic><topic>Exoplanet detection methods</topic><topic>Exoplanets</topic><topic>Extrasolar planets</topic><topic>International Space Station</topic><topic>Markov chains</topic><topic>Noise reduction</topic><topic>Photometric observations</topic><topic>Photometry</topic><topic>Planetary systems</topic><topic>Space missions</topic><topic>Space observatories</topic><topic>Space stations</topic><topic>Space telescopes</topic><topic>Spacecraft</topic><topic>Super Earths</topic><topic>Transit</topic><topic>Transit photometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knapp, Mary</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><creatorcontrib>Demory, Brice-Olivier</creatorcontrib><creatorcontrib>Krishnamurthy, Akshata</creatorcontrib><creatorcontrib>Smith, Matthew W.</creatorcontrib><creatorcontrib>Pong, Christopher M.</creatorcontrib><creatorcontrib>Bailey, Vanessa P.</creatorcontrib><creatorcontrib>Donner, Amanda</creatorcontrib><creatorcontrib>Pasquale, Peter Di</creatorcontrib><creatorcontrib>Campuzano, Brian</creatorcontrib><creatorcontrib>Smith, Colin</creatorcontrib><creatorcontrib>Luu, Jason</creatorcontrib><creatorcontrib>Babuscia, Alessandra</creatorcontrib><creatorcontrib>Bocchino, Jr, Robert L.</creatorcontrib><creatorcontrib>Loveland, Jessica</creatorcontrib><creatorcontrib>Colley, Cody</creatorcontrib><creatorcontrib>Gedenk, Tobias</creatorcontrib><creatorcontrib>Kulkarni, Tejas</creatorcontrib><creatorcontrib>Hughes, Kyle</creatorcontrib><creatorcontrib>White, Mary</creatorcontrib><creatorcontrib>Krajewski, Joel</creatorcontrib><creatorcontrib>Fesq, Lorraine</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knapp, Mary</au><au>Seager, Sara</au><au>Demory, Brice-Olivier</au><au>Krishnamurthy, Akshata</au><au>Smith, Matthew W.</au><au>Pong, Christopher M.</au><au>Bailey, Vanessa P.</au><au>Donner, Amanda</au><au>Pasquale, Peter Di</au><au>Campuzano, Brian</au><au>Smith, Colin</au><au>Luu, Jason</au><au>Babuscia, Alessandra</au><au>Bocchino, Jr, Robert L.</au><au>Loveland, Jessica</au><au>Colley, Cody</au><au>Gedenk, Tobias</au><au>Kulkarni, Tejas</au><au>Hughes, Kyle</au><au>White, Mary</au><au>Krajewski, Joel</au><au>Fesq, Lorraine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>160</volume><issue>1</issue><spage>23</spage><pages>23-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stability thermal control. ASTERIA demonstrated 0 5 rms pointing stability and 10 mK thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in 2017 August and deployed from the International Space Station in 2017 November. During the prime mission (2017 November-2018 February) and the first extended mission that followed (2018 March-2018 May), ASTERIA conducted opportunistic science observations, which included the collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct complementary metal-oxide semiconductor (CMOS) detector column-dependent gain variations. A Markov Chain Monte Carlo approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2 ), measuring a transit depth of 374 170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/ab8bcc</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0103-8820</orcidid><orcidid>https://orcid.org/0000-0002-5407-2806</orcidid><orcidid>https://orcid.org/0000-0002-9355-5165</orcidid><orcidid>https://orcid.org/0000-0002-5318-7660</orcidid><orcidid>https://orcid.org/0000-0002-8781-2743</orcidid><orcidid>https://orcid.org/0000-0002-6892-6948</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2020-07, Vol.160 (1), p.23
issn 0004-6256
1538-3881
language eng
recordid cdi_crossref_primary_10_3847_1538_3881_ab8bcc
source IOP Publishing Free Content
subjects Astronomy
Astrophysics
Broad band photometry
CMOS
Computer simulation
Control stability
Cubesat
Exoplanet astronomy
Exoplanet detection methods
Exoplanets
Extrasolar planets
International Space Station
Markov chains
Noise reduction
Photometric observations
Photometry
Planetary systems
Space missions
Space observatories
Space stations
Space telescopes
Spacecraft
Super Earths
Transit
Transit photometry
title Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstrating%20High-precision%20Photometry%20with%20a%20CubeSat:%20ASTERIA%20Observations%20of%2055%20Cancri%20e&rft.jtitle=The%20Astronomical%20journal&rft.au=Knapp,%20Mary&rft.date=2020-07-01&rft.volume=160&rft.issue=1&rft.spage=23&rft.pages=23-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/ab8bcc&rft_dat=%3Cproquest_O3W%3E2413650690%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413650690&rft_id=info:pmid/&rfr_iscdi=true