Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e
Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing con...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2020-07, Vol.160 (1), p.23 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | The Astronomical journal |
container_volume | 160 |
creator | Knapp, Mary Seager, Sara Demory, Brice-Olivier Krishnamurthy, Akshata Smith, Matthew W. Pong, Christopher M. Bailey, Vanessa P. Donner, Amanda Pasquale, Peter Di Campuzano, Brian Smith, Colin Luu, Jason Babuscia, Alessandra Bocchino, Jr, Robert L. Loveland, Jessica Colley, Cody Gedenk, Tobias Kulkarni, Tejas Hughes, Kyle White, Mary Krajewski, Joel Fesq, Lorraine |
description | Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stability thermal control. ASTERIA demonstrated 0 5 rms pointing stability and 10 mK thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in 2017 August and deployed from the International Space Station in 2017 November. During the prime mission (2017 November-2018 February) and the first extended mission that followed (2018 March-2018 May), ASTERIA conducted opportunistic science observations, which included the collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct complementary metal-oxide semiconductor (CMOS) detector column-dependent gain variations. A Markov Chain Monte Carlo approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2 ), measuring a transit depth of 374 170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements. |
doi_str_mv | 10.3847/1538-3881/ab8bcc |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_3881_ab8bcc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413650690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-5679a63293fa882119e21c18239a5dd0f24785fca809e6a8bfaa392aa77c4a523</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd3j4FdrcuPpk29jTrdYDBx8-QhfM3SLcM1NemU_fd2VPQinj54ed73gweha0puuYzTIRVcRlxKOoRCFlqfoN5PdIp6hJA4SphIztFFCFtCKJUk7qHXe7NzVWg8NLZa44ldb6LaG22DdRV-2rjG7UzjD_jTNhsMON8XZgHNHR4tluPn6QjPi2D8R9tuV7ArsRA4h0p7i80lOivhLZir79tHLw_jZT6JZvPHaT6aRZqnsolEkmaQcJbxEqRklGaGUU0l4xmI1YqULE6lKDVIkpkEZFEC8IwBpKmOQTDeR4Nut_bufW9Co7Zu76v2pWIx5YkgSUZainSU9i4Eb0pVe7sDf1CUqKNCdfSljr5Up7Ct3HQV6-rfzX_wwR84bBVNiKKKcVWvSv4FWid9zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413650690</pqid></control><display><type>article</type><title>Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e</title><source>IOP Publishing Free Content</source><creator>Knapp, Mary ; Seager, Sara ; Demory, Brice-Olivier ; Krishnamurthy, Akshata ; Smith, Matthew W. ; Pong, Christopher M. ; Bailey, Vanessa P. ; Donner, Amanda ; Pasquale, Peter Di ; Campuzano, Brian ; Smith, Colin ; Luu, Jason ; Babuscia, Alessandra ; Bocchino, Jr, Robert L. ; Loveland, Jessica ; Colley, Cody ; Gedenk, Tobias ; Kulkarni, Tejas ; Hughes, Kyle ; White, Mary ; Krajewski, Joel ; Fesq, Lorraine</creator><creatorcontrib>Knapp, Mary ; Seager, Sara ; Demory, Brice-Olivier ; Krishnamurthy, Akshata ; Smith, Matthew W. ; Pong, Christopher M. ; Bailey, Vanessa P. ; Donner, Amanda ; Pasquale, Peter Di ; Campuzano, Brian ; Smith, Colin ; Luu, Jason ; Babuscia, Alessandra ; Bocchino, Jr, Robert L. ; Loveland, Jessica ; Colley, Cody ; Gedenk, Tobias ; Kulkarni, Tejas ; Hughes, Kyle ; White, Mary ; Krajewski, Joel ; Fesq, Lorraine</creatorcontrib><description>Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stability thermal control. ASTERIA demonstrated 0 5 rms pointing stability and 10 mK thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in 2017 August and deployed from the International Space Station in 2017 November. During the prime mission (2017 November-2018 February) and the first extended mission that followed (2018 March-2018 May), ASTERIA conducted opportunistic science observations, which included the collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct complementary metal-oxide semiconductor (CMOS) detector column-dependent gain variations. A Markov Chain Monte Carlo approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2 ), measuring a transit depth of 374 170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/ab8bcc</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Astronomy ; Astrophysics ; Broad band photometry ; CMOS ; Computer simulation ; Control stability ; Cubesat ; Exoplanet astronomy ; Exoplanet detection methods ; Exoplanets ; Extrasolar planets ; International Space Station ; Markov chains ; Noise reduction ; Photometric observations ; Photometry ; Planetary systems ; Space missions ; Space observatories ; Space stations ; Space telescopes ; Spacecraft ; Super Earths ; Transit ; Transit photometry</subject><ispartof>The Astronomical journal, 2020-07, Vol.160 (1), p.23</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-5679a63293fa882119e21c18239a5dd0f24785fca809e6a8bfaa392aa77c4a523</citedby><cites>FETCH-LOGICAL-c378t-5679a63293fa882119e21c18239a5dd0f24785fca809e6a8bfaa392aa77c4a523</cites><orcidid>0000-0003-0103-8820 ; 0000-0002-5407-2806 ; 0000-0002-9355-5165 ; 0000-0002-5318-7660 ; 0000-0002-8781-2743 ; 0000-0002-6892-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/ab8bcc/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/ab8bcc$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Knapp, Mary</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><creatorcontrib>Demory, Brice-Olivier</creatorcontrib><creatorcontrib>Krishnamurthy, Akshata</creatorcontrib><creatorcontrib>Smith, Matthew W.</creatorcontrib><creatorcontrib>Pong, Christopher M.</creatorcontrib><creatorcontrib>Bailey, Vanessa P.</creatorcontrib><creatorcontrib>Donner, Amanda</creatorcontrib><creatorcontrib>Pasquale, Peter Di</creatorcontrib><creatorcontrib>Campuzano, Brian</creatorcontrib><creatorcontrib>Smith, Colin</creatorcontrib><creatorcontrib>Luu, Jason</creatorcontrib><creatorcontrib>Babuscia, Alessandra</creatorcontrib><creatorcontrib>Bocchino, Jr, Robert L.</creatorcontrib><creatorcontrib>Loveland, Jessica</creatorcontrib><creatorcontrib>Colley, Cody</creatorcontrib><creatorcontrib>Gedenk, Tobias</creatorcontrib><creatorcontrib>Kulkarni, Tejas</creatorcontrib><creatorcontrib>Hughes, Kyle</creatorcontrib><creatorcontrib>White, Mary</creatorcontrib><creatorcontrib>Krajewski, Joel</creatorcontrib><creatorcontrib>Fesq, Lorraine</creatorcontrib><title>Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stability thermal control. ASTERIA demonstrated 0 5 rms pointing stability and 10 mK thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in 2017 August and deployed from the International Space Station in 2017 November. During the prime mission (2017 November-2018 February) and the first extended mission that followed (2018 March-2018 May), ASTERIA conducted opportunistic science observations, which included the collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct complementary metal-oxide semiconductor (CMOS) detector column-dependent gain variations. A Markov Chain Monte Carlo approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2 ), measuring a transit depth of 374 170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Broad band photometry</subject><subject>CMOS</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Cubesat</subject><subject>Exoplanet astronomy</subject><subject>Exoplanet detection methods</subject><subject>Exoplanets</subject><subject>Extrasolar planets</subject><subject>International Space Station</subject><subject>Markov chains</subject><subject>Noise reduction</subject><subject>Photometric observations</subject><subject>Photometry</subject><subject>Planetary systems</subject><subject>Space missions</subject><subject>Space observatories</subject><subject>Space stations</subject><subject>Space telescopes</subject><subject>Spacecraft</subject><subject>Super Earths</subject><subject>Transit</subject><subject>Transit photometry</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd3j4FdrcuPpk29jTrdYDBx8-QhfM3SLcM1NemU_fd2VPQinj54ed73gweha0puuYzTIRVcRlxKOoRCFlqfoN5PdIp6hJA4SphIztFFCFtCKJUk7qHXe7NzVWg8NLZa44ldb6LaG22DdRV-2rjG7UzjD_jTNhsMON8XZgHNHR4tluPn6QjPi2D8R9tuV7ArsRA4h0p7i80lOivhLZir79tHLw_jZT6JZvPHaT6aRZqnsolEkmaQcJbxEqRklGaGUU0l4xmI1YqULE6lKDVIkpkEZFEC8IwBpKmOQTDeR4Nut_bufW9Co7Zu76v2pWIx5YkgSUZainSU9i4Eb0pVe7sDf1CUqKNCdfSljr5Up7Ct3HQV6-rfzX_wwR84bBVNiKKKcVWvSv4FWid9zA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Knapp, Mary</creator><creator>Seager, Sara</creator><creator>Demory, Brice-Olivier</creator><creator>Krishnamurthy, Akshata</creator><creator>Smith, Matthew W.</creator><creator>Pong, Christopher M.</creator><creator>Bailey, Vanessa P.</creator><creator>Donner, Amanda</creator><creator>Pasquale, Peter Di</creator><creator>Campuzano, Brian</creator><creator>Smith, Colin</creator><creator>Luu, Jason</creator><creator>Babuscia, Alessandra</creator><creator>Bocchino, Jr, Robert L.</creator><creator>Loveland, Jessica</creator><creator>Colley, Cody</creator><creator>Gedenk, Tobias</creator><creator>Kulkarni, Tejas</creator><creator>Hughes, Kyle</creator><creator>White, Mary</creator><creator>Krajewski, Joel</creator><creator>Fesq, Lorraine</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0103-8820</orcidid><orcidid>https://orcid.org/0000-0002-5407-2806</orcidid><orcidid>https://orcid.org/0000-0002-9355-5165</orcidid><orcidid>https://orcid.org/0000-0002-5318-7660</orcidid><orcidid>https://orcid.org/0000-0002-8781-2743</orcidid><orcidid>https://orcid.org/0000-0002-6892-6948</orcidid></search><sort><creationdate>20200701</creationdate><title>Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e</title><author>Knapp, Mary ; Seager, Sara ; Demory, Brice-Olivier ; Krishnamurthy, Akshata ; Smith, Matthew W. ; Pong, Christopher M. ; Bailey, Vanessa P. ; Donner, Amanda ; Pasquale, Peter Di ; Campuzano, Brian ; Smith, Colin ; Luu, Jason ; Babuscia, Alessandra ; Bocchino, Jr, Robert L. ; Loveland, Jessica ; Colley, Cody ; Gedenk, Tobias ; Kulkarni, Tejas ; Hughes, Kyle ; White, Mary ; Krajewski, Joel ; Fesq, Lorraine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-5679a63293fa882119e21c18239a5dd0f24785fca809e6a8bfaa392aa77c4a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Broad band photometry</topic><topic>CMOS</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Cubesat</topic><topic>Exoplanet astronomy</topic><topic>Exoplanet detection methods</topic><topic>Exoplanets</topic><topic>Extrasolar planets</topic><topic>International Space Station</topic><topic>Markov chains</topic><topic>Noise reduction</topic><topic>Photometric observations</topic><topic>Photometry</topic><topic>Planetary systems</topic><topic>Space missions</topic><topic>Space observatories</topic><topic>Space stations</topic><topic>Space telescopes</topic><topic>Spacecraft</topic><topic>Super Earths</topic><topic>Transit</topic><topic>Transit photometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knapp, Mary</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><creatorcontrib>Demory, Brice-Olivier</creatorcontrib><creatorcontrib>Krishnamurthy, Akshata</creatorcontrib><creatorcontrib>Smith, Matthew W.</creatorcontrib><creatorcontrib>Pong, Christopher M.</creatorcontrib><creatorcontrib>Bailey, Vanessa P.</creatorcontrib><creatorcontrib>Donner, Amanda</creatorcontrib><creatorcontrib>Pasquale, Peter Di</creatorcontrib><creatorcontrib>Campuzano, Brian</creatorcontrib><creatorcontrib>Smith, Colin</creatorcontrib><creatorcontrib>Luu, Jason</creatorcontrib><creatorcontrib>Babuscia, Alessandra</creatorcontrib><creatorcontrib>Bocchino, Jr, Robert L.</creatorcontrib><creatorcontrib>Loveland, Jessica</creatorcontrib><creatorcontrib>Colley, Cody</creatorcontrib><creatorcontrib>Gedenk, Tobias</creatorcontrib><creatorcontrib>Kulkarni, Tejas</creatorcontrib><creatorcontrib>Hughes, Kyle</creatorcontrib><creatorcontrib>White, Mary</creatorcontrib><creatorcontrib>Krajewski, Joel</creatorcontrib><creatorcontrib>Fesq, Lorraine</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knapp, Mary</au><au>Seager, Sara</au><au>Demory, Brice-Olivier</au><au>Krishnamurthy, Akshata</au><au>Smith, Matthew W.</au><au>Pong, Christopher M.</au><au>Bailey, Vanessa P.</au><au>Donner, Amanda</au><au>Pasquale, Peter Di</au><au>Campuzano, Brian</au><au>Smith, Colin</au><au>Luu, Jason</au><au>Babuscia, Alessandra</au><au>Bocchino, Jr, Robert L.</au><au>Loveland, Jessica</au><au>Colley, Cody</au><au>Gedenk, Tobias</au><au>Kulkarni, Tejas</au><au>Hughes, Kyle</au><au>White, Mary</au><au>Krajewski, Joel</au><au>Fesq, Lorraine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>160</volume><issue>1</issue><spage>23</spage><pages>23-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>Arcsecond Space Telescope Enabling Research In Astrophysics (ASTERIA) is a 6U CubeSat space telescope (10 cm × 20 cm × 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stability thermal control. ASTERIA demonstrated 0 5 rms pointing stability and 10 mK thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in 2017 August and deployed from the International Space Station in 2017 November. During the prime mission (2017 November-2018 February) and the first extended mission that followed (2018 March-2018 May), ASTERIA conducted opportunistic science observations, which included the collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct complementary metal-oxide semiconductor (CMOS) detector column-dependent gain variations. A Markov Chain Monte Carlo approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2 ), measuring a transit depth of 374 170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/ab8bcc</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0103-8820</orcidid><orcidid>https://orcid.org/0000-0002-5407-2806</orcidid><orcidid>https://orcid.org/0000-0002-9355-5165</orcidid><orcidid>https://orcid.org/0000-0002-5318-7660</orcidid><orcidid>https://orcid.org/0000-0002-8781-2743</orcidid><orcidid>https://orcid.org/0000-0002-6892-6948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2020-07, Vol.160 (1), p.23 |
issn | 0004-6256 1538-3881 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_3881_ab8bcc |
source | IOP Publishing Free Content |
subjects | Astronomy Astrophysics Broad band photometry CMOS Computer simulation Control stability Cubesat Exoplanet astronomy Exoplanet detection methods Exoplanets Extrasolar planets International Space Station Markov chains Noise reduction Photometric observations Photometry Planetary systems Space missions Space observatories Space stations Space telescopes Spacecraft Super Earths Transit Transit photometry |
title | Demonstrating High-precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstrating%20High-precision%20Photometry%20with%20a%20CubeSat:%20ASTERIA%20Observations%20of%2055%20Cancri%20e&rft.jtitle=The%20Astronomical%20journal&rft.au=Knapp,%20Mary&rft.date=2020-07-01&rft.volume=160&rft.issue=1&rft.spage=23&rft.pages=23-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/ab8bcc&rft_dat=%3Cproquest_O3W%3E2413650690%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413650690&rft_id=info:pmid/&rfr_iscdi=true |