Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss
Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequenc...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2019-07, Vol.158 (1), p.26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 26 |
container_title | The Astronomical journal |
container_volume | 158 |
creator | Lincowski, Andrew P. Lustig-Yaeger, Jacob Meadows, Victoria S. |
description | Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequence phase of their host stars, which may leave behind abiotically generated oxygen, a false positive for the detection of life. Determining if ocean loss has occurred will help assess potential habitability and whether or not any O2 detected is biogenic. In the solar system, differences in isotopic abundances have been used to infer the history of ocean loss and atmospheric escape (e.g., Venus, Mars). We find that isotopologue measurements using transit transmission spectra of terrestrial planets around late-type M dwarfs like TRAPPIST-1 may be possible with JWST, if the escape mechanisms and resulting isotopic fractionation were similar to Venus. We present analyses of post-ocean-loss O2- and CO2-dominated atmospheres containing a range of trace gas abundances. Isotopologue bands are likely detectable throughout the near-infrared (1-8 m), especially 3-4 m, although not in CO2-dominated atmospheres. For Venus-like D/H ratios 100 times that of Earth, TRAPPIST-1b transit signals of up to 79 ppm are possible by observing HDO. Similarly, 18O/16O ratios 100 times that of Earth produce signals at up to 94 ppm. Detection at signal-to-noise ratio = 5 may be attained on these bands with as few as four to 11 transits, with optimal use of JWST's NIRSpec Prism. Consequently, H2O and CO2 isotopologues could be considered as indicators of past ocean loss and atmospheric escape for JWST observations of terrestrial planets around M dwarfs. |
doi_str_mv | 10.3847/1538-3881/ab2385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_3881_ab2385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357546994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-5ac4d1c10d10b753a333cb286a0c877164cdd0af3d04363304b269c1227439d93</originalsourceid><addsrcrecordid>eNp1UUtPAjEQbowmInr32MSrK-1O9-UNCSqGBBMxHjfdbhdKlm1ti8rv8Y9aglEvniYz8z3mgdA5JVeQs2xAE8gjyHM64FUMeXKAej-lQ9QjhLAojZP0GJ04tyKE0pywHvqcVU7aN9Ut8MRpr41u9WIj8Q3vaodVh-fSWum8VbzF4w9tWt5Jj4d-rZ1ZytDC78ovsV9K_MDXIX2RVYWfDBcycFvphDbyGk_WplWCe6U7hxtt8aSWnVfNduf8yN0fSSVwMMczIXmHp9q5U3TU8NbJs-_YR8-34_noPprO7iaj4TTikIGPEi5YTQUlNSVVlgAHAFHFecqJyLOMpkzUNeEN1IRBCkBYFaeFoHGcMSjqAvroYq9rrH7dhKXLld7YLliWMSRZwtKiYAFF9ihhw2xWNqWxas3ttqSk3L2i3N293N293L8iUC73FKXNr-a_8C8W0ovY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357546994</pqid></control><display><type>article</type><title>Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lincowski, Andrew P. ; Lustig-Yaeger, Jacob ; Meadows, Victoria S.</creator><creatorcontrib>Lincowski, Andrew P. ; Lustig-Yaeger, Jacob ; Meadows, Victoria S.</creatorcontrib><description>Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequence phase of their host stars, which may leave behind abiotically generated oxygen, a false positive for the detection of life. Determining if ocean loss has occurred will help assess potential habitability and whether or not any O2 detected is biogenic. In the solar system, differences in isotopic abundances have been used to infer the history of ocean loss and atmospheric escape (e.g., Venus, Mars). We find that isotopologue measurements using transit transmission spectra of terrestrial planets around late-type M dwarfs like TRAPPIST-1 may be possible with JWST, if the escape mechanisms and resulting isotopic fractionation were similar to Venus. We present analyses of post-ocean-loss O2- and CO2-dominated atmospheres containing a range of trace gas abundances. Isotopologue bands are likely detectable throughout the near-infrared (1-8 m), especially 3-4 m, although not in CO2-dominated atmospheres. For Venus-like D/H ratios 100 times that of Earth, TRAPPIST-1b transit signals of up to 79 ppm are possible by observing HDO. Similarly, 18O/16O ratios 100 times that of Earth produce signals at up to 94 ppm. Detection at signal-to-noise ratio = 5 may be attained on these bands with as few as four to 11 transits, with optimal use of JWST's NIRSpec Prism. Consequently, H2O and CO2 isotopologues could be considered as indicators of past ocean loss and atmospheric escape for JWST observations of terrestrial planets around M dwarfs.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/ab2385</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Abundance ; Astronomy ; Atmosphere ; Atmospheric composition ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Extrasolar planets ; Fractionation ; Habitability ; Isotope fractionation ; James Webb Space Telescope ; Oceans ; Oxygen ; Planetary atmospheres ; planets and satellites: atmospheres ; planets and satellites: detection ; planets and satellites: individual (TRAPPIST-1) ; planets and satellites: terrestrial planets ; Pre-main sequence stars ; Red dwarf stars ; Signal to noise ratio ; Solar system ; Space telescopes ; Terrestrial environments ; Terrestrial planets ; Trace gases ; Transits ; Venus ; Venus atmosphere</subject><ispartof>The Astronomical journal, 2019-07, Vol.158 (1), p.26</ispartof><rights>2019. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-5ac4d1c10d10b753a333cb286a0c877164cdd0af3d04363304b269c1227439d93</citedby><cites>FETCH-LOGICAL-a373t-5ac4d1c10d10b753a333cb286a0c877164cdd0af3d04363304b269c1227439d93</cites><orcidid>0000-0002-0746-1980 ; 0000-0002-1386-1710 ; 0000-0003-0429-9487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/ab2385/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27922,27923,38866,38888,53838,53865</link.rule.ids></links><search><creatorcontrib>Lincowski, Andrew P.</creatorcontrib><creatorcontrib>Lustig-Yaeger, Jacob</creatorcontrib><creatorcontrib>Meadows, Victoria S.</creatorcontrib><title>Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequence phase of their host stars, which may leave behind abiotically generated oxygen, a false positive for the detection of life. Determining if ocean loss has occurred will help assess potential habitability and whether or not any O2 detected is biogenic. In the solar system, differences in isotopic abundances have been used to infer the history of ocean loss and atmospheric escape (e.g., Venus, Mars). We find that isotopologue measurements using transit transmission spectra of terrestrial planets around late-type M dwarfs like TRAPPIST-1 may be possible with JWST, if the escape mechanisms and resulting isotopic fractionation were similar to Venus. We present analyses of post-ocean-loss O2- and CO2-dominated atmospheres containing a range of trace gas abundances. Isotopologue bands are likely detectable throughout the near-infrared (1-8 m), especially 3-4 m, although not in CO2-dominated atmospheres. For Venus-like D/H ratios 100 times that of Earth, TRAPPIST-1b transit signals of up to 79 ppm are possible by observing HDO. Similarly, 18O/16O ratios 100 times that of Earth produce signals at up to 94 ppm. Detection at signal-to-noise ratio = 5 may be attained on these bands with as few as four to 11 transits, with optimal use of JWST's NIRSpec Prism. Consequently, H2O and CO2 isotopologues could be considered as indicators of past ocean loss and atmospheric escape for JWST observations of terrestrial planets around M dwarfs.</description><subject>Abundance</subject><subject>Astronomy</subject><subject>Atmosphere</subject><subject>Atmospheric composition</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Extrasolar planets</subject><subject>Fractionation</subject><subject>Habitability</subject><subject>Isotope fractionation</subject><subject>James Webb Space Telescope</subject><subject>Oceans</subject><subject>Oxygen</subject><subject>Planetary atmospheres</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: detection</subject><subject>planets and satellites: individual (TRAPPIST-1)</subject><subject>planets and satellites: terrestrial planets</subject><subject>Pre-main sequence stars</subject><subject>Red dwarf stars</subject><subject>Signal to noise ratio</subject><subject>Solar system</subject><subject>Space telescopes</subject><subject>Terrestrial environments</subject><subject>Terrestrial planets</subject><subject>Trace gases</subject><subject>Transits</subject><subject>Venus</subject><subject>Venus atmosphere</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UUtPAjEQbowmInr32MSrK-1O9-UNCSqGBBMxHjfdbhdKlm1ti8rv8Y9aglEvniYz8z3mgdA5JVeQs2xAE8gjyHM64FUMeXKAej-lQ9QjhLAojZP0GJ04tyKE0pywHvqcVU7aN9Ut8MRpr41u9WIj8Q3vaodVh-fSWum8VbzF4w9tWt5Jj4d-rZ1ZytDC78ovsV9K_MDXIX2RVYWfDBcycFvphDbyGk_WplWCe6U7hxtt8aSWnVfNduf8yN0fSSVwMMczIXmHp9q5U3TU8NbJs-_YR8-34_noPprO7iaj4TTikIGPEi5YTQUlNSVVlgAHAFHFecqJyLOMpkzUNeEN1IRBCkBYFaeFoHGcMSjqAvroYq9rrH7dhKXLld7YLliWMSRZwtKiYAFF9ihhw2xWNqWxas3ttqSk3L2i3N293N293L8iUC73FKXNr-a_8C8W0ovY</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Lincowski, Andrew P.</creator><creator>Lustig-Yaeger, Jacob</creator><creator>Meadows, Victoria S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0746-1980</orcidid><orcidid>https://orcid.org/0000-0002-1386-1710</orcidid><orcidid>https://orcid.org/0000-0003-0429-9487</orcidid></search><sort><creationdate>20190701</creationdate><title>Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss</title><author>Lincowski, Andrew P. ; Lustig-Yaeger, Jacob ; Meadows, Victoria S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-5ac4d1c10d10b753a333cb286a0c877164cdd0af3d04363304b269c1227439d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>Astronomy</topic><topic>Atmosphere</topic><topic>Atmospheric composition</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Extrasolar planets</topic><topic>Fractionation</topic><topic>Habitability</topic><topic>Isotope fractionation</topic><topic>James Webb Space Telescope</topic><topic>Oceans</topic><topic>Oxygen</topic><topic>Planetary atmospheres</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: detection</topic><topic>planets and satellites: individual (TRAPPIST-1)</topic><topic>planets and satellites: terrestrial planets</topic><topic>Pre-main sequence stars</topic><topic>Red dwarf stars</topic><topic>Signal to noise ratio</topic><topic>Solar system</topic><topic>Space telescopes</topic><topic>Terrestrial environments</topic><topic>Terrestrial planets</topic><topic>Trace gases</topic><topic>Transits</topic><topic>Venus</topic><topic>Venus atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lincowski, Andrew P.</creatorcontrib><creatorcontrib>Lustig-Yaeger, Jacob</creatorcontrib><creatorcontrib>Meadows, Victoria S.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lincowski, Andrew P.</au><au>Lustig-Yaeger, Jacob</au><au>Meadows, Victoria S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>158</volume><issue>1</issue><spage>26</spage><pages>26-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequence phase of their host stars, which may leave behind abiotically generated oxygen, a false positive for the detection of life. Determining if ocean loss has occurred will help assess potential habitability and whether or not any O2 detected is biogenic. In the solar system, differences in isotopic abundances have been used to infer the history of ocean loss and atmospheric escape (e.g., Venus, Mars). We find that isotopologue measurements using transit transmission spectra of terrestrial planets around late-type M dwarfs like TRAPPIST-1 may be possible with JWST, if the escape mechanisms and resulting isotopic fractionation were similar to Venus. We present analyses of post-ocean-loss O2- and CO2-dominated atmospheres containing a range of trace gas abundances. Isotopologue bands are likely detectable throughout the near-infrared (1-8 m), especially 3-4 m, although not in CO2-dominated atmospheres. For Venus-like D/H ratios 100 times that of Earth, TRAPPIST-1b transit signals of up to 79 ppm are possible by observing HDO. Similarly, 18O/16O ratios 100 times that of Earth produce signals at up to 94 ppm. Detection at signal-to-noise ratio = 5 may be attained on these bands with as few as four to 11 transits, with optimal use of JWST's NIRSpec Prism. Consequently, H2O and CO2 isotopologues could be considered as indicators of past ocean loss and atmospheric escape for JWST observations of terrestrial planets around M dwarfs.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/ab2385</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0746-1980</orcidid><orcidid>https://orcid.org/0000-0002-1386-1710</orcidid><orcidid>https://orcid.org/0000-0003-0429-9487</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2019-07, Vol.158 (1), p.26 |
issn | 0004-6256 1538-3881 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_3881_ab2385 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Abundance Astronomy Atmosphere Atmospheric composition Carbon dioxide Carbon dioxide atmospheric concentrations Extrasolar planets Fractionation Habitability Isotope fractionation James Webb Space Telescope Oceans Oxygen Planetary atmospheres planets and satellites: atmospheres planets and satellites: detection planets and satellites: individual (TRAPPIST-1) planets and satellites: terrestrial planets Pre-main sequence stars Red dwarf stars Signal to noise ratio Solar system Space telescopes Terrestrial environments Terrestrial planets Trace gases Transits Venus Venus atmosphere |
title | Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20Isotopologue%20Bands%20in%20Terrestrial%20Exoplanet%20Atmospheres%20with%20the%20James%20Webb%20Space%20Telescope:%20Implications%20for%20Identifying%20Past%20Atmospheric%20and%20Ocean%20Loss&rft.jtitle=The%20Astronomical%20journal&rft.au=Lincowski,%20Andrew%20P.&rft.date=2019-07-01&rft.volume=158&rft.issue=1&rft.spage=26&rft.pages=26-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/ab2385&rft_dat=%3Cproquest_cross%3E2357546994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357546994&rft_id=info:pmid/&rfr_iscdi=true |