Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss

Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2019-07, Vol.158 (1), p.26
Hauptverfasser: Lincowski, Andrew P., Lustig-Yaeger, Jacob, Meadows, Victoria S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 26
container_title The Astronomical journal
container_volume 158
creator Lincowski, Andrew P.
Lustig-Yaeger, Jacob
Meadows, Victoria S.
description Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequence phase of their host stars, which may leave behind abiotically generated oxygen, a false positive for the detection of life. Determining if ocean loss has occurred will help assess potential habitability and whether or not any O2 detected is biogenic. In the solar system, differences in isotopic abundances have been used to infer the history of ocean loss and atmospheric escape (e.g., Venus, Mars). We find that isotopologue measurements using transit transmission spectra of terrestrial planets around late-type M dwarfs like TRAPPIST-1 may be possible with JWST, if the escape mechanisms and resulting isotopic fractionation were similar to Venus. We present analyses of post-ocean-loss O2- and CO2-dominated atmospheres containing a range of trace gas abundances. Isotopologue bands are likely detectable throughout the near-infrared (1-8 m), especially 3-4 m, although not in CO2-dominated atmospheres. For Venus-like D/H ratios 100 times that of Earth, TRAPPIST-1b transit signals of up to 79 ppm are possible by observing HDO. Similarly, 18O/16O ratios 100 times that of Earth produce signals at up to 94 ppm. Detection at signal-to-noise ratio = 5 may be attained on these bands with as few as four to 11 transits, with optimal use of JWST's NIRSpec Prism. Consequently, H2O and CO2 isotopologues could be considered as indicators of past ocean loss and atmospheric escape for JWST observations of terrestrial planets around M dwarfs.
doi_str_mv 10.3847/1538-3881/ab2385
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_3881_ab2385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357546994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-5ac4d1c10d10b753a333cb286a0c877164cdd0af3d04363304b269c1227439d93</originalsourceid><addsrcrecordid>eNp1UUtPAjEQbowmInr32MSrK-1O9-UNCSqGBBMxHjfdbhdKlm1ti8rv8Y9aglEvniYz8z3mgdA5JVeQs2xAE8gjyHM64FUMeXKAej-lQ9QjhLAojZP0GJ04tyKE0pywHvqcVU7aN9Ut8MRpr41u9WIj8Q3vaodVh-fSWum8VbzF4w9tWt5Jj4d-rZ1ZytDC78ovsV9K_MDXIX2RVYWfDBcycFvphDbyGk_WplWCe6U7hxtt8aSWnVfNduf8yN0fSSVwMMczIXmHp9q5U3TU8NbJs-_YR8-34_noPprO7iaj4TTikIGPEi5YTQUlNSVVlgAHAFHFecqJyLOMpkzUNeEN1IRBCkBYFaeFoHGcMSjqAvroYq9rrH7dhKXLld7YLliWMSRZwtKiYAFF9ihhw2xWNqWxas3ttqSk3L2i3N293N293L8iUC73FKXNr-a_8C8W0ovY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357546994</pqid></control><display><type>article</type><title>Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lincowski, Andrew P. ; Lustig-Yaeger, Jacob ; Meadows, Victoria S.</creator><creatorcontrib>Lincowski, Andrew P. ; Lustig-Yaeger, Jacob ; Meadows, Victoria S.</creatorcontrib><description>Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequence phase of their host stars, which may leave behind abiotically generated oxygen, a false positive for the detection of life. Determining if ocean loss has occurred will help assess potential habitability and whether or not any O2 detected is biogenic. In the solar system, differences in isotopic abundances have been used to infer the history of ocean loss and atmospheric escape (e.g., Venus, Mars). We find that isotopologue measurements using transit transmission spectra of terrestrial planets around late-type M dwarfs like TRAPPIST-1 may be possible with JWST, if the escape mechanisms and resulting isotopic fractionation were similar to Venus. We present analyses of post-ocean-loss O2- and CO2-dominated atmospheres containing a range of trace gas abundances. Isotopologue bands are likely detectable throughout the near-infrared (1-8 m), especially 3-4 m, although not in CO2-dominated atmospheres. For Venus-like D/H ratios 100 times that of Earth, TRAPPIST-1b transit signals of up to 79 ppm are possible by observing HDO. Similarly, 18O/16O ratios 100 times that of Earth produce signals at up to 94 ppm. Detection at signal-to-noise ratio = 5 may be attained on these bands with as few as four to 11 transits, with optimal use of JWST's NIRSpec Prism. Consequently, H2O and CO2 isotopologues could be considered as indicators of past ocean loss and atmospheric escape for JWST observations of terrestrial planets around M dwarfs.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/ab2385</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Abundance ; Astronomy ; Atmosphere ; Atmospheric composition ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Extrasolar planets ; Fractionation ; Habitability ; Isotope fractionation ; James Webb Space Telescope ; Oceans ; Oxygen ; Planetary atmospheres ; planets and satellites: atmospheres ; planets and satellites: detection ; planets and satellites: individual (TRAPPIST-1) ; planets and satellites: terrestrial planets ; Pre-main sequence stars ; Red dwarf stars ; Signal to noise ratio ; Solar system ; Space telescopes ; Terrestrial environments ; Terrestrial planets ; Trace gases ; Transits ; Venus ; Venus atmosphere</subject><ispartof>The Astronomical journal, 2019-07, Vol.158 (1), p.26</ispartof><rights>2019. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-5ac4d1c10d10b753a333cb286a0c877164cdd0af3d04363304b269c1227439d93</citedby><cites>FETCH-LOGICAL-a373t-5ac4d1c10d10b753a333cb286a0c877164cdd0af3d04363304b269c1227439d93</cites><orcidid>0000-0002-0746-1980 ; 0000-0002-1386-1710 ; 0000-0003-0429-9487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/ab2385/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27922,27923,38866,38888,53838,53865</link.rule.ids></links><search><creatorcontrib>Lincowski, Andrew P.</creatorcontrib><creatorcontrib>Lustig-Yaeger, Jacob</creatorcontrib><creatorcontrib>Meadows, Victoria S.</creatorcontrib><title>Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequence phase of their host stars, which may leave behind abiotically generated oxygen, a false positive for the detection of life. Determining if ocean loss has occurred will help assess potential habitability and whether or not any O2 detected is biogenic. In the solar system, differences in isotopic abundances have been used to infer the history of ocean loss and atmospheric escape (e.g., Venus, Mars). We find that isotopologue measurements using transit transmission spectra of terrestrial planets around late-type M dwarfs like TRAPPIST-1 may be possible with JWST, if the escape mechanisms and resulting isotopic fractionation were similar to Venus. We present analyses of post-ocean-loss O2- and CO2-dominated atmospheres containing a range of trace gas abundances. Isotopologue bands are likely detectable throughout the near-infrared (1-8 m), especially 3-4 m, although not in CO2-dominated atmospheres. For Venus-like D/H ratios 100 times that of Earth, TRAPPIST-1b transit signals of up to 79 ppm are possible by observing HDO. Similarly, 18O/16O ratios 100 times that of Earth produce signals at up to 94 ppm. Detection at signal-to-noise ratio = 5 may be attained on these bands with as few as four to 11 transits, with optimal use of JWST's NIRSpec Prism. Consequently, H2O and CO2 isotopologues could be considered as indicators of past ocean loss and atmospheric escape for JWST observations of terrestrial planets around M dwarfs.</description><subject>Abundance</subject><subject>Astronomy</subject><subject>Atmosphere</subject><subject>Atmospheric composition</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Extrasolar planets</subject><subject>Fractionation</subject><subject>Habitability</subject><subject>Isotope fractionation</subject><subject>James Webb Space Telescope</subject><subject>Oceans</subject><subject>Oxygen</subject><subject>Planetary atmospheres</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: detection</subject><subject>planets and satellites: individual (TRAPPIST-1)</subject><subject>planets and satellites: terrestrial planets</subject><subject>Pre-main sequence stars</subject><subject>Red dwarf stars</subject><subject>Signal to noise ratio</subject><subject>Solar system</subject><subject>Space telescopes</subject><subject>Terrestrial environments</subject><subject>Terrestrial planets</subject><subject>Trace gases</subject><subject>Transits</subject><subject>Venus</subject><subject>Venus atmosphere</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UUtPAjEQbowmInr32MSrK-1O9-UNCSqGBBMxHjfdbhdKlm1ti8rv8Y9aglEvniYz8z3mgdA5JVeQs2xAE8gjyHM64FUMeXKAej-lQ9QjhLAojZP0GJ04tyKE0pywHvqcVU7aN9Ut8MRpr41u9WIj8Q3vaodVh-fSWum8VbzF4w9tWt5Jj4d-rZ1ZytDC78ovsV9K_MDXIX2RVYWfDBcycFvphDbyGk_WplWCe6U7hxtt8aSWnVfNduf8yN0fSSVwMMczIXmHp9q5U3TU8NbJs-_YR8-34_noPprO7iaj4TTikIGPEi5YTQUlNSVVlgAHAFHFecqJyLOMpkzUNeEN1IRBCkBYFaeFoHGcMSjqAvroYq9rrH7dhKXLld7YLliWMSRZwtKiYAFF9ihhw2xWNqWxas3ttqSk3L2i3N293N293L8iUC73FKXNr-a_8C8W0ovY</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Lincowski, Andrew P.</creator><creator>Lustig-Yaeger, Jacob</creator><creator>Meadows, Victoria S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0746-1980</orcidid><orcidid>https://orcid.org/0000-0002-1386-1710</orcidid><orcidid>https://orcid.org/0000-0003-0429-9487</orcidid></search><sort><creationdate>20190701</creationdate><title>Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss</title><author>Lincowski, Andrew P. ; Lustig-Yaeger, Jacob ; Meadows, Victoria S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-5ac4d1c10d10b753a333cb286a0c877164cdd0af3d04363304b269c1227439d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>Astronomy</topic><topic>Atmosphere</topic><topic>Atmospheric composition</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Extrasolar planets</topic><topic>Fractionation</topic><topic>Habitability</topic><topic>Isotope fractionation</topic><topic>James Webb Space Telescope</topic><topic>Oceans</topic><topic>Oxygen</topic><topic>Planetary atmospheres</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: detection</topic><topic>planets and satellites: individual (TRAPPIST-1)</topic><topic>planets and satellites: terrestrial planets</topic><topic>Pre-main sequence stars</topic><topic>Red dwarf stars</topic><topic>Signal to noise ratio</topic><topic>Solar system</topic><topic>Space telescopes</topic><topic>Terrestrial environments</topic><topic>Terrestrial planets</topic><topic>Trace gases</topic><topic>Transits</topic><topic>Venus</topic><topic>Venus atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lincowski, Andrew P.</creatorcontrib><creatorcontrib>Lustig-Yaeger, Jacob</creatorcontrib><creatorcontrib>Meadows, Victoria S.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lincowski, Andrew P.</au><au>Lustig-Yaeger, Jacob</au><au>Meadows, Victoria S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>158</volume><issue>1</issue><spage>26</spage><pages>26-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>Terrestrial planets orbiting M dwarfs may soon be observed with the James Webb Space Telescope (JWST) to characterize their atmospheric composition and search for signs of habitability or life. These planets may undergo significant atmospheric and ocean loss due to the superluminous pre-main-sequence phase of their host stars, which may leave behind abiotically generated oxygen, a false positive for the detection of life. Determining if ocean loss has occurred will help assess potential habitability and whether or not any O2 detected is biogenic. In the solar system, differences in isotopic abundances have been used to infer the history of ocean loss and atmospheric escape (e.g., Venus, Mars). We find that isotopologue measurements using transit transmission spectra of terrestrial planets around late-type M dwarfs like TRAPPIST-1 may be possible with JWST, if the escape mechanisms and resulting isotopic fractionation were similar to Venus. We present analyses of post-ocean-loss O2- and CO2-dominated atmospheres containing a range of trace gas abundances. Isotopologue bands are likely detectable throughout the near-infrared (1-8 m), especially 3-4 m, although not in CO2-dominated atmospheres. For Venus-like D/H ratios 100 times that of Earth, TRAPPIST-1b transit signals of up to 79 ppm are possible by observing HDO. Similarly, 18O/16O ratios 100 times that of Earth produce signals at up to 94 ppm. Detection at signal-to-noise ratio = 5 may be attained on these bands with as few as four to 11 transits, with optimal use of JWST's NIRSpec Prism. Consequently, H2O and CO2 isotopologues could be considered as indicators of past ocean loss and atmospheric escape for JWST observations of terrestrial planets around M dwarfs.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/ab2385</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0746-1980</orcidid><orcidid>https://orcid.org/0000-0002-1386-1710</orcidid><orcidid>https://orcid.org/0000-0003-0429-9487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2019-07, Vol.158 (1), p.26
issn 0004-6256
1538-3881
language eng
recordid cdi_crossref_primary_10_3847_1538_3881_ab2385
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Abundance
Astronomy
Atmosphere
Atmospheric composition
Carbon dioxide
Carbon dioxide atmospheric concentrations
Extrasolar planets
Fractionation
Habitability
Isotope fractionation
James Webb Space Telescope
Oceans
Oxygen
Planetary atmospheres
planets and satellites: atmospheres
planets and satellites: detection
planets and satellites: individual (TRAPPIST-1)
planets and satellites: terrestrial planets
Pre-main sequence stars
Red dwarf stars
Signal to noise ratio
Solar system
Space telescopes
Terrestrial environments
Terrestrial planets
Trace gases
Transits
Venus
Venus atmosphere
title Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20Isotopologue%20Bands%20in%20Terrestrial%20Exoplanet%20Atmospheres%20with%20the%20James%20Webb%20Space%20Telescope:%20Implications%20for%20Identifying%20Past%20Atmospheric%20and%20Ocean%20Loss&rft.jtitle=The%20Astronomical%20journal&rft.au=Lincowski,%20Andrew%20P.&rft.date=2019-07-01&rft.volume=158&rft.issue=1&rft.spage=26&rft.pages=26-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/ab2385&rft_dat=%3Cproquest_cross%3E2357546994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357546994&rft_id=info:pmid/&rfr_iscdi=true