Flat Structure on the Space of Isomonodromic Deformations

Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2020-11
Hauptverfasser: Kato, Mitsuo, Mano, Toshiyuki, Sekiguchi, Jiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Symmetry, integrability and geometry, methods and applications
container_volume
creator Kato, Mitsuo
Mano, Toshiyuki
Sekiguchi, Jiro
description Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo system, which is a special kind of systems of linear differential equations. We show that the space of independent variables of such isomonodromic deformations can be equipped with a Saito structure (without a metric), which was introduced by C. Sabbah as a generalization of Frobenius manifold. As its consequence, we introduce flat basic invariants of well-generated finite complex reflection groups and give explicit descriptions of Saito structures (without metrics) obtained from algebraic solutions to the sixth Painlevé equation.
doi_str_mv 10.3842/SIGMA.2020.110
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3842_SIGMA_2020_110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3842_SIGMA_2020_110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-3d6b80cc7a34e27aa419aa82490943baddc2bb80cd6d6b8c4e593c00c9187dcc3</originalsourceid><addsrcrecordid>eNpNj8tOwzAURC0EEqWwZe0fSLh-5OFlVWiJVMQi7dpyrh0R1MSV7S74expgwWpmpKORDiGPDHJRS_7UNtu3Vc6BQ84YXJEFq1mRQVmo63_9ltzF-AkgS1nCgqjN0STapnDGdA6O-ommD0fbk8HL6GkT_egnb4MfB6TPrvdhNGnwU7wnN705Rvfwl0ty2Lzs16_Z7n3brFe7DIWClAlbdjUgVkZIxytjJFPG1FwqUFJ0xlrk3UzYciZRukIJBEDF6soiiiXJf38x-BiD6_UpDKMJX5qBnsX1j7iexfVFXHwDpkpL7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flat Structure on the Space of Isomonodromic Deformations</title><source>Math-Net.Ru (free access)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kato, Mitsuo ; Mano, Toshiyuki ; Sekiguchi, Jiro</creator><creatorcontrib>Kato, Mitsuo ; Mano, Toshiyuki ; Sekiguchi, Jiro ; University of the Ryukyus, Japan ; Tokyo University of Agriculture and Technology, Japan</creatorcontrib><description>Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo system, which is a special kind of systems of linear differential equations. We show that the space of independent variables of such isomonodromic deformations can be equipped with a Saito structure (without a metric), which was introduced by C. Sabbah as a generalization of Frobenius manifold. As its consequence, we introduce flat basic invariants of well-generated finite complex reflection groups and give explicit descriptions of Saito structures (without metrics) obtained from algebraic solutions to the sixth Painlevé equation.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2020.110</identifier><language>eng</language><ispartof>Symmetry, integrability and geometry, methods and applications, 2020-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-3d6b80cc7a34e27aa419aa82490943baddc2bb80cd6d6b8c4e593c00c9187dcc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kato, Mitsuo</creatorcontrib><creatorcontrib>Mano, Toshiyuki</creatorcontrib><creatorcontrib>Sekiguchi, Jiro</creatorcontrib><creatorcontrib>University of the Ryukyus, Japan</creatorcontrib><creatorcontrib>Tokyo University of Agriculture and Technology, Japan</creatorcontrib><title>Flat Structure on the Space of Isomonodromic Deformations</title><title>Symmetry, integrability and geometry, methods and applications</title><description>Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo system, which is a special kind of systems of linear differential equations. We show that the space of independent variables of such isomonodromic deformations can be equipped with a Saito structure (without a metric), which was introduced by C. Sabbah as a generalization of Frobenius manifold. As its consequence, we introduce flat basic invariants of well-generated finite complex reflection groups and give explicit descriptions of Saito structures (without metrics) obtained from algebraic solutions to the sixth Painlevé equation.</description><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNj8tOwzAURC0EEqWwZe0fSLh-5OFlVWiJVMQi7dpyrh0R1MSV7S74expgwWpmpKORDiGPDHJRS_7UNtu3Vc6BQ84YXJEFq1mRQVmo63_9ltzF-AkgS1nCgqjN0STapnDGdA6O-ommD0fbk8HL6GkT_egnb4MfB6TPrvdhNGnwU7wnN705Rvfwl0ty2Lzs16_Z7n3brFe7DIWClAlbdjUgVkZIxytjJFPG1FwqUFJ0xlrk3UzYciZRukIJBEDF6soiiiXJf38x-BiD6_UpDKMJX5qBnsX1j7iexfVFXHwDpkpL7w</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Kato, Mitsuo</creator><creator>Mano, Toshiyuki</creator><creator>Sekiguchi, Jiro</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201103</creationdate><title>Flat Structure on the Space of Isomonodromic Deformations</title><author>Kato, Mitsuo ; Mano, Toshiyuki ; Sekiguchi, Jiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-3d6b80cc7a34e27aa419aa82490943baddc2bb80cd6d6b8c4e593c00c9187dcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Mitsuo</creatorcontrib><creatorcontrib>Mano, Toshiyuki</creatorcontrib><creatorcontrib>Sekiguchi, Jiro</creatorcontrib><creatorcontrib>University of the Ryukyus, Japan</creatorcontrib><creatorcontrib>Tokyo University of Agriculture and Technology, Japan</creatorcontrib><collection>CrossRef</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Mitsuo</au><au>Mano, Toshiyuki</au><au>Sekiguchi, Jiro</au><aucorp>University of the Ryukyus, Japan</aucorp><aucorp>Tokyo University of Agriculture and Technology, Japan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flat Structure on the Space of Isomonodromic Deformations</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2020-11-03</date><risdate>2020</risdate><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo system, which is a special kind of systems of linear differential equations. We show that the space of independent variables of such isomonodromic deformations can be equipped with a Saito structure (without a metric), which was introduced by C. Sabbah as a generalization of Frobenius manifold. As its consequence, we introduce flat basic invariants of well-generated finite complex reflection groups and give explicit descriptions of Saito structures (without metrics) obtained from algebraic solutions to the sixth Painlevé equation.</abstract><doi>10.3842/SIGMA.2020.110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1815-0659
ispartof Symmetry, integrability and geometry, methods and applications, 2020-11
issn 1815-0659
1815-0659
language eng
recordid cdi_crossref_primary_10_3842_SIGMA_2020_110
source Math-Net.Ru (free access); EZB-FREE-00999 freely available EZB journals
title Flat Structure on the Space of Isomonodromic Deformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flat%20Structure%20on%20the%20Space%20of%20Isomonodromic%20Deformations&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Kato,%20Mitsuo&rft.aucorp=University%20of%20the%20Ryukyus,%20Japan&rft.date=2020-11-03&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2020.110&rft_dat=%3Ccrossref%3E10_3842_SIGMA_2020_110%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true