Ultrasound-Based Silent Speech Interface Using Convolutional and Recurrent Neural Networks
Silent Speech Interface (SSI) is a technology with the goal of synthesizing speech from articulatory motion. A Deep Neural Network based SSI using ultrasound images of the tongue as input signals and spectral coefficients of a vocoder as target parameters are proposed. Several deep learning models,...
Gespeichert in:
Veröffentlicht in: | Acta acustica united with Acustica 2019-07, Vol.105 (4), p.587-590 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 4 |
container_start_page | 587 |
container_title | Acta acustica united with Acustica |
container_volume | 105 |
creator | Juanpere, Eloi Moliner Csapó, Tamás Gábor |
description | Silent Speech Interface (SSI) is a technology with the goal of synthesizing speech from articulatory motion. A Deep Neural Network based SSI using ultrasound images of the tongue as input signals and spectral coefficients of a vocoder as target parameters are proposed. Several deep
learning models, such as a baseline Feed-forward, and a combination of Convolutional and Recurrent Neural Networks are presented and discussed. A pre-processing step using a Deep Convolutional AutoEncoder was also studied. According to the experimental results, an architecture based on a CNN
and bidirectional LSTM layers has shown the best objective and subjective results. |
doi_str_mv | 10.3813/AAA.919339 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3813_AAA_919339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3813_AAA_919339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-ce163d8fcda16f982eaeaf8bcfcb54938ec8bf8bd628e4c65e81deefd8a655493</originalsourceid><addsrcrecordid>eNotkLFOwzAYhD2ARCksPIFnpJQ4Tow9hghopapIlCwskWP_hoCxK9sB8fYkKtPpTnc3fAhdkXxFOaE3dV2vBBGUihO0IIzkGREFP0PnMX7keUkFYwv02toUZPSj09mdjKDxfrDgEt4fANQ73rgEwUgFuI2De8ONd9_ejmnwTlosncbPoMYQ5skOxjCFO0g_PnzGC3RqpI1w-a9L1D7cvzTrbPv0uGnqbaYKdpsyBYRRzY3SkjAjeAESpOG9MqqvSkE5KN5PXrOCQ6lYBZxoAKO5ZNVcWKLr468KPsYApjuE4UuG347k3Uyim0h0RxL0DxOYVbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrasound-Based Silent Speech Interface Using Convolutional and Recurrent Neural Networks</title><source>Alma/SFX Local Collection</source><creator>Juanpere, Eloi Moliner ; Csapó, Tamás Gábor</creator><creatorcontrib>Juanpere, Eloi Moliner ; Csapó, Tamás Gábor</creatorcontrib><description>Silent Speech Interface (SSI) is a technology with the goal of synthesizing speech from articulatory motion. A Deep Neural Network based SSI using ultrasound images of the tongue as input signals and spectral coefficients of a vocoder as target parameters are proposed. Several deep
learning models, such as a baseline Feed-forward, and a combination of Convolutional and Recurrent Neural Networks are presented and discussed. A pre-processing step using a Deep Convolutional AutoEncoder was also studied. According to the experimental results, an architecture based on a CNN
and bidirectional LSTM layers has shown the best objective and subjective results.</description><identifier>ISSN: 1610-1928</identifier><identifier>DOI: 10.3813/AAA.919339</identifier><language>eng</language><ispartof>Acta acustica united with Acustica, 2019-07, Vol.105 (4), p.587-590</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-ce163d8fcda16f982eaeaf8bcfcb54938ec8bf8bd628e4c65e81deefd8a655493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Juanpere, Eloi Moliner</creatorcontrib><creatorcontrib>Csapó, Tamás Gábor</creatorcontrib><title>Ultrasound-Based Silent Speech Interface Using Convolutional and Recurrent Neural Networks</title><title>Acta acustica united with Acustica</title><description>Silent Speech Interface (SSI) is a technology with the goal of synthesizing speech from articulatory motion. A Deep Neural Network based SSI using ultrasound images of the tongue as input signals and spectral coefficients of a vocoder as target parameters are proposed. Several deep
learning models, such as a baseline Feed-forward, and a combination of Convolutional and Recurrent Neural Networks are presented and discussed. A pre-processing step using a Deep Convolutional AutoEncoder was also studied. According to the experimental results, an architecture based on a CNN
and bidirectional LSTM layers has shown the best objective and subjective results.</description><issn>1610-1928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAYhD2ARCksPIFnpJQ4Tow9hghopapIlCwskWP_hoCxK9sB8fYkKtPpTnc3fAhdkXxFOaE3dV2vBBGUihO0IIzkGREFP0PnMX7keUkFYwv02toUZPSj09mdjKDxfrDgEt4fANQ73rgEwUgFuI2De8ONd9_ejmnwTlosncbPoMYQ5skOxjCFO0g_PnzGC3RqpI1w-a9L1D7cvzTrbPv0uGnqbaYKdpsyBYRRzY3SkjAjeAESpOG9MqqvSkE5KN5PXrOCQ6lYBZxoAKO5ZNVcWKLr468KPsYApjuE4UuG347k3Uyim0h0RxL0DxOYVbc</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Juanpere, Eloi Moliner</creator><creator>Csapó, Tamás Gábor</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Ultrasound-Based Silent Speech Interface Using Convolutional and Recurrent Neural Networks</title><author>Juanpere, Eloi Moliner ; Csapó, Tamás Gábor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-ce163d8fcda16f982eaeaf8bcfcb54938ec8bf8bd628e4c65e81deefd8a655493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juanpere, Eloi Moliner</creatorcontrib><creatorcontrib>Csapó, Tamás Gábor</creatorcontrib><collection>CrossRef</collection><jtitle>Acta acustica united with Acustica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juanpere, Eloi Moliner</au><au>Csapó, Tamás Gábor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound-Based Silent Speech Interface Using Convolutional and Recurrent Neural Networks</atitle><jtitle>Acta acustica united with Acustica</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>105</volume><issue>4</issue><spage>587</spage><epage>590</epage><pages>587-590</pages><issn>1610-1928</issn><abstract>Silent Speech Interface (SSI) is a technology with the goal of synthesizing speech from articulatory motion. A Deep Neural Network based SSI using ultrasound images of the tongue as input signals and spectral coefficients of a vocoder as target parameters are proposed. Several deep
learning models, such as a baseline Feed-forward, and a combination of Convolutional and Recurrent Neural Networks are presented and discussed. A pre-processing step using a Deep Convolutional AutoEncoder was also studied. According to the experimental results, an architecture based on a CNN
and bidirectional LSTM layers has shown the best objective and subjective results.</abstract><doi>10.3813/AAA.919339</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-1928 |
ispartof | Acta acustica united with Acustica, 2019-07, Vol.105 (4), p.587-590 |
issn | 1610-1928 |
language | eng |
recordid | cdi_crossref_primary_10_3813_AAA_919339 |
source | Alma/SFX Local Collection |
title | Ultrasound-Based Silent Speech Interface Using Convolutional and Recurrent Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound-Based%20Silent%20Speech%20Interface%20Using%20Convolutional%20and%20Recurrent%20Neural%20Networks&rft.jtitle=Acta%20acustica%20united%20with%20Acustica&rft.au=Juanpere,%20Eloi%20Moliner&rft.date=2019-07-01&rft.volume=105&rft.issue=4&rft.spage=587&rft.epage=590&rft.pages=587-590&rft.issn=1610-1928&rft_id=info:doi/10.3813/AAA.919339&rft_dat=%3Ccrossref%3E10_3813_AAA_919339%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |