Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain

One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2021-07, Vol.28 (3)
Hauptverfasser: Erdős, Péter L., Győri, Ervin, Mezei, Tamás Róbert, Miklós, István, Soltész, Dániel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Electronic journal of combinatorics
container_volume 28
creator Erdős, Péter L.
Győri, Ervin
Mezei, Tamás Róbert
Miklós, István
Soltész, Dániel
description One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences. In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well.
doi_str_mv 10.37236/9652
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_9652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_9652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-51300d684c2e9f6681225fb8ce2127a41a21e9d184d881c5ca2548d846c257693</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqX0H7ywYfB7iR17RAFa1EKHwhy5zgsJhKTYoYi_pxQGpnuHozMcxiYgL5IME31ptcIDNgKZZcJY1If__jE7ifFFSkBr1YjNZ66txDS4TR3P-XKoKfCHvhNxcOuW-DU9ByK-ovcP6jztENeVfEfx1Wcz-Jrfu_Dab3leu6Y7ZUeVayNN_nbMnm5vHvOZWCynd_nVQngEPQgFiZSlNqlHspXWBhBVtTaeEDBzKTgEsiWYtDQGvPIOVWpKk2qPKtM2GbOzX68PfYyBqmITmjcXvgqQxb5A8VMg-QaN50rG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Erdős, Péter L. ; Győri, Ervin ; Mezei, Tamás Róbert ; Miklós, István ; Soltész, Dániel</creator><creatorcontrib>Erdős, Péter L. ; Győri, Ervin ; Mezei, Tamás Róbert ; Miklós, István ; Soltész, Dániel</creatorcontrib><description>One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences. In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/9652</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2021-07, Vol.28 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Erdős, Péter L.</creatorcontrib><creatorcontrib>Győri, Ervin</creatorcontrib><creatorcontrib>Mezei, Tamás Róbert</creatorcontrib><creatorcontrib>Miklós, István</creatorcontrib><creatorcontrib>Soltész, Dániel</creatorcontrib><title>Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain</title><title>The Electronic journal of combinatorics</title><description>One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences. In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EEqX0H7ywYfB7iR17RAFa1EKHwhy5zgsJhKTYoYi_pxQGpnuHozMcxiYgL5IME31ptcIDNgKZZcJY1If__jE7ifFFSkBr1YjNZ66txDS4TR3P-XKoKfCHvhNxcOuW-DU9ByK-ovcP6jztENeVfEfx1Wcz-Jrfu_Dab3leu6Y7ZUeVayNN_nbMnm5vHvOZWCynd_nVQngEPQgFiZSlNqlHspXWBhBVtTaeEDBzKTgEsiWYtDQGvPIOVWpKk2qPKtM2GbOzX68PfYyBqmITmjcXvgqQxb5A8VMg-QaN50rG</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Erdős, Péter L.</creator><creator>Győri, Ervin</creator><creator>Mezei, Tamás Róbert</creator><creator>Miklós, István</creator><creator>Soltész, Dániel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210702</creationdate><title>Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain</title><author>Erdős, Péter L. ; Győri, Ervin ; Mezei, Tamás Róbert ; Miklós, István ; Soltész, Dániel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-51300d684c2e9f6681225fb8ce2127a41a21e9d184d881c5ca2548d846c257693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdős, Péter L.</creatorcontrib><creatorcontrib>Győri, Ervin</creatorcontrib><creatorcontrib>Mezei, Tamás Róbert</creatorcontrib><creatorcontrib>Miklós, István</creatorcontrib><creatorcontrib>Soltész, Dániel</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdős, Péter L.</au><au>Győri, Ervin</au><au>Mezei, Tamás Róbert</au><au>Miklós, István</au><au>Soltész, Dániel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2021-07-02</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences. In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well.</abstract><doi>10.37236/9652</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2021-07, Vol.28 (3)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_9652
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Half-Graphs,%20Other%20Non-stable%20Degree%20Sequences,%20and%20the%20Switch%20Markov%20Chain&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Erd%C5%91s,%20P%C3%A9ter%20L.&rft.date=2021-07-02&rft.volume=28&rft.issue=3&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/9652&rft_dat=%3Ccrossref%3E10_37236_9652%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true