Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain
One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concer...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2021-07, Vol.28 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 28 |
creator | Erdős, Péter L. Győri, Ervin Mezei, Tamás Róbert Miklós, István Soltész, Dániel |
description | One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences.
In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well. |
doi_str_mv | 10.37236/9652 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_9652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_9652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-51300d684c2e9f6681225fb8ce2127a41a21e9d184d881c5ca2548d846c257693</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqX0H7ywYfB7iR17RAFa1EKHwhy5zgsJhKTYoYi_pxQGpnuHozMcxiYgL5IME31ptcIDNgKZZcJY1If__jE7ifFFSkBr1YjNZ66txDS4TR3P-XKoKfCHvhNxcOuW-DU9ByK-ovcP6jztENeVfEfx1Wcz-Jrfu_Dab3leu6Y7ZUeVayNN_nbMnm5vHvOZWCynd_nVQngEPQgFiZSlNqlHspXWBhBVtTaeEDBzKTgEsiWYtDQGvPIOVWpKk2qPKtM2GbOzX68PfYyBqmITmjcXvgqQxb5A8VMg-QaN50rG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Erdős, Péter L. ; Győri, Ervin ; Mezei, Tamás Róbert ; Miklós, István ; Soltész, Dániel</creator><creatorcontrib>Erdős, Péter L. ; Győri, Ervin ; Mezei, Tamás Róbert ; Miklós, István ; Soltész, Dániel</creatorcontrib><description>One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences.
In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/9652</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2021-07, Vol.28 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Erdős, Péter L.</creatorcontrib><creatorcontrib>Győri, Ervin</creatorcontrib><creatorcontrib>Mezei, Tamás Róbert</creatorcontrib><creatorcontrib>Miklós, István</creatorcontrib><creatorcontrib>Soltész, Dániel</creatorcontrib><title>Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain</title><title>The Electronic journal of combinatorics</title><description>One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences.
In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EEqX0H7ywYfB7iR17RAFa1EKHwhy5zgsJhKTYoYi_pxQGpnuHozMcxiYgL5IME31ptcIDNgKZZcJY1If__jE7ifFFSkBr1YjNZ66txDS4TR3P-XKoKfCHvhNxcOuW-DU9ByK-ovcP6jztENeVfEfx1Wcz-Jrfu_Dab3leu6Y7ZUeVayNN_nbMnm5vHvOZWCynd_nVQngEPQgFiZSlNqlHspXWBhBVtTaeEDBzKTgEsiWYtDQGvPIOVWpKk2qPKtM2GbOzX68PfYyBqmITmjcXvgqQxb5A8VMg-QaN50rG</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Erdős, Péter L.</creator><creator>Győri, Ervin</creator><creator>Mezei, Tamás Róbert</creator><creator>Miklós, István</creator><creator>Soltész, Dániel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210702</creationdate><title>Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain</title><author>Erdős, Péter L. ; Győri, Ervin ; Mezei, Tamás Róbert ; Miklós, István ; Soltész, Dániel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-51300d684c2e9f6681225fb8ce2127a41a21e9d184d881c5ca2548d846c257693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdős, Péter L.</creatorcontrib><creatorcontrib>Győri, Ervin</creatorcontrib><creatorcontrib>Mezei, Tamás Róbert</creatorcontrib><creatorcontrib>Miklós, István</creatorcontrib><creatorcontrib>Soltész, Dániel</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdős, Péter L.</au><au>Győri, Ervin</au><au>Mezei, Tamás Róbert</au><au>Miklós, István</au><au>Soltész, Dániel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2021-07-02</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences.
In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well.</abstract><doi>10.37236/9652</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2021-07, Vol.28 (3) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_9652 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Half-Graphs, Other Non-stable Degree Sequences, and the Switch Markov Chain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Half-Graphs,%20Other%20Non-stable%20Degree%20Sequences,%20and%20the%20Switch%20Markov%20Chain&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Erd%C5%91s,%20P%C3%A9ter%20L.&rft.date=2021-07-02&rft.volume=28&rft.issue=3&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/9652&rft_dat=%3Ccrossref%3E10_37236_9652%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |