Some Properties of Unitary Cayley Graphs
The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and sh...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2007-06, Vol.14 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 14 |
creator | Klotz, Walter Sander, Torsten |
description | The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function. |
doi_str_mv | 10.37236/963 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-d34f9e7768faabc0a4c59d84a10efccc51882abcf12d2af1ae6cd1f7d4c21af23</originalsourceid><addsrcrecordid>eNpNj09LxDAUxIMouO76HXLw4KWal7T5c5Siq7CgoHsuz-Q9rOzakvTSb29RD55mYJhhfkJsQN0Yp429DdaciBUo5yoftD3958_FRSmfSoEOoVmJ69fhSPIlDyPlqaciB5b7r37CPMsW5wPNcptx_CgbccZ4KHT5p2uxf7h_ax-r3fP2qb3bVVFDmKpkag7knPWM-B4V1rEJydcIijjG2ID3egkYdNLIgGRjAnapXvrI2qzF1e9uzEMpmbgbc39c7nSguh-6bqEz3zlZQVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Properties of Unitary Cayley Graphs</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Klotz, Walter ; Sander, Torsten</creator><creatorcontrib>Klotz, Walter ; Sander, Torsten</creatorcontrib><description>The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/963</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2007-06, Vol.14 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-d34f9e7768faabc0a4c59d84a10efccc51882abcf12d2af1ae6cd1f7d4c21af23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Klotz, Walter</creatorcontrib><creatorcontrib>Sander, Torsten</creatorcontrib><title>Some Properties of Unitary Cayley Graphs</title><title>The Electronic journal of combinatorics</title><description>The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNj09LxDAUxIMouO76HXLw4KWal7T5c5Siq7CgoHsuz-Q9rOzakvTSb29RD55mYJhhfkJsQN0Yp429DdaciBUo5yoftD3958_FRSmfSoEOoVmJ69fhSPIlDyPlqaciB5b7r37CPMsW5wPNcptx_CgbccZ4KHT5p2uxf7h_ax-r3fP2qb3bVVFDmKpkag7knPWM-B4V1rEJydcIijjG2ID3egkYdNLIgGRjAnapXvrI2qzF1e9uzEMpmbgbc39c7nSguh-6bqEz3zlZQVM</recordid><startdate>20070621</startdate><enddate>20070621</enddate><creator>Klotz, Walter</creator><creator>Sander, Torsten</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070621</creationdate><title>Some Properties of Unitary Cayley Graphs</title><author>Klotz, Walter ; Sander, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-d34f9e7768faabc0a4c59d84a10efccc51882abcf12d2af1ae6cd1f7d4c21af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klotz, Walter</creatorcontrib><creatorcontrib>Sander, Torsten</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klotz, Walter</au><au>Sander, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Properties of Unitary Cayley Graphs</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2007-06-21</date><risdate>2007</risdate><volume>14</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.</abstract><doi>10.37236/963</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2007-06, Vol.14 (1) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_963 |
source | EZB-FREE-00999 freely available EZB journals |
title | Some Properties of Unitary Cayley Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Properties%20of%20Unitary%20Cayley%20Graphs&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Klotz,%20Walter&rft.date=2007-06-21&rft.volume=14&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/963&rft_dat=%3Ccrossref%3E10_37236_963%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |