A Toeplitz Property of Ballot Permutations and Odd Order Permutations

We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and cert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-06, Vol.27 (2)
Hauptverfasser: Wang, David G.L., Zhang, Jerry J.R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Electronic journal of combinatorics
container_volume 27
creator Wang, David G.L.
Zhang, Jerry J.R.
description We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and certain cyclic weights of odd order permutations of the same length are equi-distributed. We present a bijection to establish a Toeplitz property for ballot permutations with any fixed number of descents, and a Toeplitz property for odd order permutations with any fixed cyclic weight. This allows us to refine Spiro's conjecture by tracking the neighbors of the largest letter in permutations.
doi_str_mv 10.37236/9298
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_9298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_9298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-3f9f068086565752f6bea6b8d95b6bddac1ca1bf45a3a2da4e97332e0d3382bb3</originalsourceid><addsrcrecordid>eNpVj81KAzEYRYMoWGvfIRuXo0m-5m9ZS61CoV3U9fBlksDItBmSuKhP718XurjcCwcuHEJmnN2DFqAerLDmgkw407oxVqjLP_ua3JTyxhgX1soJWS3oPoVx6OsH3eU0hlxPNEX6iMOQKt2FfHivWPt0LBSPnm79V7IP-R-6JVcRhxJm556S16fVfvncbLbrl-Vi03TcyNpAtJEpw4ySSmoponIBlTPeSqec99jxDrmLc4mAwuM8WA0gAvMARjgHU3L3-9vlVEoOsR1zf8B8ajlrf9zbb3f4BNidS5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Toeplitz Property of Ballot Permutations and Odd Order Permutations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, David G.L. ; Zhang, Jerry J.R.</creator><creatorcontrib>Wang, David G.L. ; Zhang, Jerry J.R.</creatorcontrib><description>We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and certain cyclic weights of odd order permutations of the same length are equi-distributed. We present a bijection to establish a Toeplitz property for ballot permutations with any fixed number of descents, and a Toeplitz property for odd order permutations with any fixed cyclic weight. This allows us to refine Spiro's conjecture by tracking the neighbors of the largest letter in permutations.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/9298</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2020-06, Vol.27 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, David G.L.</creatorcontrib><creatorcontrib>Zhang, Jerry J.R.</creatorcontrib><title>A Toeplitz Property of Ballot Permutations and Odd Order Permutations</title><title>The Electronic journal of combinatorics</title><description>We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and certain cyclic weights of odd order permutations of the same length are equi-distributed. We present a bijection to establish a Toeplitz property for ballot permutations with any fixed number of descents, and a Toeplitz property for odd order permutations with any fixed cyclic weight. This allows us to refine Spiro's conjecture by tracking the neighbors of the largest letter in permutations.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVj81KAzEYRYMoWGvfIRuXo0m-5m9ZS61CoV3U9fBlksDItBmSuKhP718XurjcCwcuHEJmnN2DFqAerLDmgkw407oxVqjLP_ua3JTyxhgX1soJWS3oPoVx6OsH3eU0hlxPNEX6iMOQKt2FfHivWPt0LBSPnm79V7IP-R-6JVcRhxJm556S16fVfvncbLbrl-Vi03TcyNpAtJEpw4ySSmoponIBlTPeSqec99jxDrmLc4mAwuM8WA0gAvMARjgHU3L3-9vlVEoOsR1zf8B8ajlrf9zbb3f4BNidS5g</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Wang, David G.L.</creator><creator>Zhang, Jerry J.R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200626</creationdate><title>A Toeplitz Property of Ballot Permutations and Odd Order Permutations</title><author>Wang, David G.L. ; Zhang, Jerry J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-3f9f068086565752f6bea6b8d95b6bddac1ca1bf45a3a2da4e97332e0d3382bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, David G.L.</creatorcontrib><creatorcontrib>Zhang, Jerry J.R.</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, David G.L.</au><au>Zhang, Jerry J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Toeplitz Property of Ballot Permutations and Odd Order Permutations</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>27</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and certain cyclic weights of odd order permutations of the same length are equi-distributed. We present a bijection to establish a Toeplitz property for ballot permutations with any fixed number of descents, and a Toeplitz property for odd order permutations with any fixed cyclic weight. This allows us to refine Spiro's conjecture by tracking the neighbors of the largest letter in permutations.</abstract><doi>10.37236/9298</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2020-06, Vol.27 (2)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_9298
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A Toeplitz Property of Ballot Permutations and Odd Order Permutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Toeplitz%20Property%20of%20Ballot%20Permutations%20and%20Odd%20Order%20Permutations&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Wang,%20David%20G.L.&rft.date=2020-06-26&rft.volume=27&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/9298&rft_dat=%3Ccrossref%3E10_37236_9298%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true