A Toeplitz Property of Ballot Permutations and Odd Order Permutations
We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and cert...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2020-06, Vol.27 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 27 |
creator | Wang, David G.L. Zhang, Jerry J.R. |
description | We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and certain cyclic weights of odd order permutations of the same length are equi-distributed. We present a bijection to establish a Toeplitz property for ballot permutations with any fixed number of descents, and a Toeplitz property for odd order permutations with any fixed cyclic weight. This allows us to refine Spiro's conjecture by tracking the neighbors of the largest letter in permutations. |
doi_str_mv | 10.37236/9298 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_9298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_9298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-3f9f068086565752f6bea6b8d95b6bddac1ca1bf45a3a2da4e97332e0d3382bb3</originalsourceid><addsrcrecordid>eNpVj81KAzEYRYMoWGvfIRuXo0m-5m9ZS61CoV3U9fBlksDItBmSuKhP718XurjcCwcuHEJmnN2DFqAerLDmgkw407oxVqjLP_ua3JTyxhgX1soJWS3oPoVx6OsH3eU0hlxPNEX6iMOQKt2FfHivWPt0LBSPnm79V7IP-R-6JVcRhxJm556S16fVfvncbLbrl-Vi03TcyNpAtJEpw4ySSmoponIBlTPeSqec99jxDrmLc4mAwuM8WA0gAvMARjgHU3L3-9vlVEoOsR1zf8B8ajlrf9zbb3f4BNidS5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Toeplitz Property of Ballot Permutations and Odd Order Permutations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, David G.L. ; Zhang, Jerry J.R.</creator><creatorcontrib>Wang, David G.L. ; Zhang, Jerry J.R.</creatorcontrib><description>We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and certain cyclic weights of odd order permutations of the same length are equi-distributed. We present a bijection to establish a Toeplitz property for ballot permutations with any fixed number of descents, and a Toeplitz property for odd order permutations with any fixed cyclic weight. This allows us to refine Spiro's conjecture by tracking the neighbors of the largest letter in permutations.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/9298</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2020-06, Vol.27 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, David G.L.</creatorcontrib><creatorcontrib>Zhang, Jerry J.R.</creatorcontrib><title>A Toeplitz Property of Ballot Permutations and Odd Order Permutations</title><title>The Electronic journal of combinatorics</title><description>We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and certain cyclic weights of odd order permutations of the same length are equi-distributed. We present a bijection to establish a Toeplitz property for ballot permutations with any fixed number of descents, and a Toeplitz property for odd order permutations with any fixed cyclic weight. This allows us to refine Spiro's conjecture by tracking the neighbors of the largest letter in permutations.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVj81KAzEYRYMoWGvfIRuXo0m-5m9ZS61CoV3U9fBlksDItBmSuKhP718XurjcCwcuHEJmnN2DFqAerLDmgkw407oxVqjLP_ua3JTyxhgX1soJWS3oPoVx6OsH3eU0hlxPNEX6iMOQKt2FfHivWPt0LBSPnm79V7IP-R-6JVcRhxJm556S16fVfvncbLbrl-Vi03TcyNpAtJEpw4ySSmoponIBlTPeSqec99jxDrmLc4mAwuM8WA0gAvMARjgHU3L3-9vlVEoOsR1zf8B8ajlrf9zbb3f4BNidS5g</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Wang, David G.L.</creator><creator>Zhang, Jerry J.R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200626</creationdate><title>A Toeplitz Property of Ballot Permutations and Odd Order Permutations</title><author>Wang, David G.L. ; Zhang, Jerry J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-3f9f068086565752f6bea6b8d95b6bddac1ca1bf45a3a2da4e97332e0d3382bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, David G.L.</creatorcontrib><creatorcontrib>Zhang, Jerry J.R.</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, David G.L.</au><au>Zhang, Jerry J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Toeplitz Property of Ballot Permutations and Odd Order Permutations</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>27</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We give a new semi-combinatorial proof for the equality of the number of ballot permutations of length $n$ and the number of odd order permutations of length $n$, which was originally proven by Bernardi, Duplantier and Nadeau. Spiro conjectures that the descent number of ballot permutations and certain cyclic weights of odd order permutations of the same length are equi-distributed. We present a bijection to establish a Toeplitz property for ballot permutations with any fixed number of descents, and a Toeplitz property for odd order permutations with any fixed cyclic weight. This allows us to refine Spiro's conjecture by tracking the neighbors of the largest letter in permutations.</abstract><doi>10.37236/9298</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2020-06, Vol.27 (2) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_9298 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | A Toeplitz Property of Ballot Permutations and Odd Order Permutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Toeplitz%20Property%20of%20Ballot%20Permutations%20and%20Odd%20Order%20Permutations&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Wang,%20David%20G.L.&rft.date=2020-06-26&rft.volume=27&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/9298&rft_dat=%3Ccrossref%3E10_37236_9298%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |