Towards Degree Distribution of a Duplication-Divergence Graph Model

We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2021-01, Vol.28 (1)
Hauptverfasser: Turowski, Krzysztof, Szpankowski, Wojciech
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 28
creator Turowski, Krzysztof
Szpankowski, Wojciech
description We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results, especially for the degree distribution. In this paper we focus on two related problems: the expected value and variance of the degree of a given node over the evolution of the graph and the expected value and variance of the average degree over all nodes. We present exact and precise asymptotic results showing that both quantities may decrease or increase over time depending on the model parameters. Our findings are a step towards a better understanding of the graph behaviors such as degree distributions, symmetry, power law, and structural compression.
doi_str_mv 10.37236/9251
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_9251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_9251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-749fd8346663beade1b423b02b9f87053ed679ad7b85be37fe599de67ff0c1c93</originalsourceid><addsrcrecordid>eNpNj7tOwzAYRi0EEqX0HbwwGnyJ7XhECRSkIpYyR778LkahjuwUxNujAgPT-XSGTzoIrRi9FpoLdWO4ZCdowajWpDVcnf7b5-ii1jdKGTdGLlC3zZ-2hIp72BUA3Kc6l-QOc8p7nCO2uD9MY_L2KEifPqDsYO8Br4udXvFTDjBeorNoxwqrPy7Ry_3dtnsgm-f1Y3e7IZ5LPhPdmBha0SilhAMbgLmGC0e5M7HVVAoIShsbtGulA6EjSGMCKB0j9cwbsURXv7--5FoLxGEq6d2Wr4HR4ad8OJaLbw09SpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards Degree Distribution of a Duplication-Divergence Graph Model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Turowski, Krzysztof ; Szpankowski, Wojciech</creator><creatorcontrib>Turowski, Krzysztof ; Szpankowski, Wojciech</creatorcontrib><description>We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results, especially for the degree distribution. In this paper we focus on two related problems: the expected value and variance of the degree of a given node over the evolution of the graph and the expected value and variance of the average degree over all nodes. We present exact and precise asymptotic results showing that both quantities may decrease or increase over time depending on the model parameters. Our findings are a step towards a better understanding of the graph behaviors such as degree distributions, symmetry, power law, and structural compression.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/9251</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2021-01, Vol.28 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-749fd8346663beade1b423b02b9f87053ed679ad7b85be37fe599de67ff0c1c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Turowski, Krzysztof</creatorcontrib><creatorcontrib>Szpankowski, Wojciech</creatorcontrib><title>Towards Degree Distribution of a Duplication-Divergence Graph Model</title><title>The Electronic journal of combinatorics</title><description>We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results, especially for the degree distribution. In this paper we focus on two related problems: the expected value and variance of the degree of a given node over the evolution of the graph and the expected value and variance of the average degree over all nodes. We present exact and precise asymptotic results showing that both quantities may decrease or increase over time depending on the model parameters. Our findings are a step towards a better understanding of the graph behaviors such as degree distributions, symmetry, power law, and structural compression.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj7tOwzAYRi0EEqX0HbwwGnyJ7XhECRSkIpYyR778LkahjuwUxNujAgPT-XSGTzoIrRi9FpoLdWO4ZCdowajWpDVcnf7b5-ii1jdKGTdGLlC3zZ-2hIp72BUA3Kc6l-QOc8p7nCO2uD9MY_L2KEifPqDsYO8Br4udXvFTDjBeorNoxwqrPy7Ry_3dtnsgm-f1Y3e7IZ5LPhPdmBha0SilhAMbgLmGC0e5M7HVVAoIShsbtGulA6EjSGMCKB0j9cwbsURXv7--5FoLxGEq6d2Wr4HR4ad8OJaLbw09SpQ</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Turowski, Krzysztof</creator><creator>Szpankowski, Wojciech</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210129</creationdate><title>Towards Degree Distribution of a Duplication-Divergence Graph Model</title><author>Turowski, Krzysztof ; Szpankowski, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-749fd8346663beade1b423b02b9f87053ed679ad7b85be37fe599de67ff0c1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turowski, Krzysztof</creatorcontrib><creatorcontrib>Szpankowski, Wojciech</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turowski, Krzysztof</au><au>Szpankowski, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Degree Distribution of a Duplication-Divergence Graph Model</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2021-01-29</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results, especially for the degree distribution. In this paper we focus on two related problems: the expected value and variance of the degree of a given node over the evolution of the graph and the expected value and variance of the average degree over all nodes. We present exact and precise asymptotic results showing that both quantities may decrease or increase over time depending on the model parameters. Our findings are a step towards a better understanding of the graph behaviors such as degree distributions, symmetry, power law, and structural compression.</abstract><doi>10.37236/9251</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2021-01, Vol.28 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_9251
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Towards Degree Distribution of a Duplication-Divergence Graph Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Degree%20Distribution%20of%20a%20Duplication-Divergence%20Graph%20Model&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Turowski,%20Krzysztof&rft.date=2021-01-29&rft.volume=28&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/9251&rft_dat=%3Ccrossref%3E10_37236_9251%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true