Towards Degree Distribution of a Duplication-Divergence Graph Model
We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results,...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2021-01, Vol.28 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 28 |
creator | Turowski, Krzysztof Szpankowski, Wojciech |
description | We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results, especially for the degree distribution. In this paper we focus on two related problems: the expected value and variance of the degree of a given node over the evolution of the graph and the expected value and variance of the average degree over all nodes. We present exact and precise asymptotic results showing that both quantities may decrease or increase over time depending on the model parameters. Our findings are a step towards a better understanding of the graph behaviors such as degree distributions, symmetry, power law, and structural compression. |
doi_str_mv | 10.37236/9251 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_9251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_9251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-749fd8346663beade1b423b02b9f87053ed679ad7b85be37fe599de67ff0c1c93</originalsourceid><addsrcrecordid>eNpNj7tOwzAYRi0EEqX0HbwwGnyJ7XhECRSkIpYyR778LkahjuwUxNujAgPT-XSGTzoIrRi9FpoLdWO4ZCdowajWpDVcnf7b5-ii1jdKGTdGLlC3zZ-2hIp72BUA3Kc6l-QOc8p7nCO2uD9MY_L2KEifPqDsYO8Br4udXvFTDjBeorNoxwqrPy7Ry_3dtnsgm-f1Y3e7IZ5LPhPdmBha0SilhAMbgLmGC0e5M7HVVAoIShsbtGulA6EjSGMCKB0j9cwbsURXv7--5FoLxGEq6d2Wr4HR4ad8OJaLbw09SpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards Degree Distribution of a Duplication-Divergence Graph Model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Turowski, Krzysztof ; Szpankowski, Wojciech</creator><creatorcontrib>Turowski, Krzysztof ; Szpankowski, Wojciech</creatorcontrib><description>We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results, especially for the degree distribution. In this paper we focus on two related problems: the expected value and variance of the degree of a given node over the evolution of the graph and the expected value and variance of the average degree over all nodes. We present exact and precise asymptotic results showing that both quantities may decrease or increase over time depending on the model parameters. Our findings are a step towards a better understanding of the graph behaviors such as degree distributions, symmetry, power law, and structural compression.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/9251</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2021-01, Vol.28 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-749fd8346663beade1b423b02b9f87053ed679ad7b85be37fe599de67ff0c1c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Turowski, Krzysztof</creatorcontrib><creatorcontrib>Szpankowski, Wojciech</creatorcontrib><title>Towards Degree Distribution of a Duplication-Divergence Graph Model</title><title>The Electronic journal of combinatorics</title><description>We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results, especially for the degree distribution. In this paper we focus on two related problems: the expected value and variance of the degree of a given node over the evolution of the graph and the expected value and variance of the average degree over all nodes. We present exact and precise asymptotic results showing that both quantities may decrease or increase over time depending on the model parameters. Our findings are a step towards a better understanding of the graph behaviors such as degree distributions, symmetry, power law, and structural compression.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj7tOwzAYRi0EEqX0HbwwGnyJ7XhECRSkIpYyR778LkahjuwUxNujAgPT-XSGTzoIrRi9FpoLdWO4ZCdowajWpDVcnf7b5-ii1jdKGTdGLlC3zZ-2hIp72BUA3Kc6l-QOc8p7nCO2uD9MY_L2KEifPqDsYO8Br4udXvFTDjBeorNoxwqrPy7Ry_3dtnsgm-f1Y3e7IZ5LPhPdmBha0SilhAMbgLmGC0e5M7HVVAoIShsbtGulA6EjSGMCKB0j9cwbsURXv7--5FoLxGEq6d2Wr4HR4ad8OJaLbw09SpQ</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Turowski, Krzysztof</creator><creator>Szpankowski, Wojciech</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210129</creationdate><title>Towards Degree Distribution of a Duplication-Divergence Graph Model</title><author>Turowski, Krzysztof ; Szpankowski, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-749fd8346663beade1b423b02b9f87053ed679ad7b85be37fe599de67ff0c1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turowski, Krzysztof</creatorcontrib><creatorcontrib>Szpankowski, Wojciech</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turowski, Krzysztof</au><au>Szpankowski, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Degree Distribution of a Duplication-Divergence Graph Model</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2021-01-29</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We present a rigorous and precise analysis of degree distribution in a dynamic graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added according to a duplication-divergence mechanism. This model is discussed in numerous publications with only very few recent rigorous results, especially for the degree distribution. In this paper we focus on two related problems: the expected value and variance of the degree of a given node over the evolution of the graph and the expected value and variance of the average degree over all nodes. We present exact and precise asymptotic results showing that both quantities may decrease or increase over time depending on the model parameters. Our findings are a step towards a better understanding of the graph behaviors such as degree distributions, symmetry, power law, and structural compression.</abstract><doi>10.37236/9251</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2021-01, Vol.28 (1) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_9251 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Towards Degree Distribution of a Duplication-Divergence Graph Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Degree%20Distribution%20of%20a%20Duplication-Divergence%20Graph%20Model&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Turowski,%20Krzysztof&rft.date=2021-01-29&rft.volume=28&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/9251&rft_dat=%3Ccrossref%3E10_37236_9251%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |