Bounded Degree Spanners of the Hypercube

 In this short note we study two questions about the existence of subgraphs of the hypercube $Q_n$ with certain properties. The first question, due to Erdős–Hamburger–Pippert–Weakley, asks whether there exists a bounded degree subgraph of $Q_n$ which has diameter $n$. We answer this question  by giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-07, Vol.27 (3)
Hauptverfasser: Nenadov, Rajko, Sawhney, Mehtab, Sudakov, Benny, Wagner, Adam Zsolt
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Electronic journal of combinatorics
container_volume 27
creator Nenadov, Rajko
Sawhney, Mehtab
Sudakov, Benny
Wagner, Adam Zsolt
description  In this short note we study two questions about the existence of subgraphs of the hypercube $Q_n$ with certain properties. The first question, due to Erdős–Hamburger–Pippert–Weakley, asks whether there exists a bounded degree subgraph of $Q_n$ which has diameter $n$. We answer this question  by giving an explicit construction of such a subgraph with maximum degree at most 120. The second problem concerns properties of $k$-additive spanners of the hypercube, that is, subgraphs of $Q_n$ in which the distance between any two vertices is at most $k$ larger than in $Q_n$. Denoting by $\Delta_{k,\infty}(n)$ the minimum possible maximum degree of a $k$-additive spanner of $Q_n$, Arizumi–Hamburger–Kostochka showed that  $$\frac{n}{\ln n}e^{-4k}\leq \Delta_{2k,\infty}(n)\leq 20\frac{n}{\ln n}\ln \ln n.$$ We improve their upper bound by showing that     $$\Delta_{2k,\infty}(n)\leq 10^{4k} \frac{n}{\ln n}\ln^{(k+1)}n,$$where the last term denotes a $k+1$-fold iterated logarithm.
doi_str_mv 10.37236/9074
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_9074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_9074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-c6387aeacc6c189ab3edfb6d7288d6735b594b27e3c46b313e2d829ead2500e53</originalsourceid><addsrcrecordid>eNpNj7tOAkEUQCdGEwH5h2lMbFZm7t15lYoCJiQWar2Zx10fgd3NDBT8PUEprM6pTnIYm0pxjwZQz5ww9QUbSWFMZR3oy39-zcal_AghwTk1YneP_b5LlPgTfWYi_jb4rqNceN_y3Rfx1WGgHPeBbthV6zeFpmdO2Mfi-X2-qtavy5f5w7qKAHJXRY3WePIx6iit8wEptUEnA9YmbVAF5eoAhjDWOqBEgmTBkU-ghCCFE3b71425LyVT2wz5e-vzoZGi-d1rTnt4BDuwQEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bounded Degree Spanners of the Hypercube</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nenadov, Rajko ; Sawhney, Mehtab ; Sudakov, Benny ; Wagner, Adam Zsolt</creator><creatorcontrib>Nenadov, Rajko ; Sawhney, Mehtab ; Sudakov, Benny ; Wagner, Adam Zsolt</creatorcontrib><description> In this short note we study two questions about the existence of subgraphs of the hypercube $Q_n$ with certain properties. The first question, due to Erdős–Hamburger–Pippert–Weakley, asks whether there exists a bounded degree subgraph of $Q_n$ which has diameter $n$. We answer this question  by giving an explicit construction of such a subgraph with maximum degree at most 120. The second problem concerns properties of $k$-additive spanners of the hypercube, that is, subgraphs of $Q_n$ in which the distance between any two vertices is at most $k$ larger than in $Q_n$. Denoting by $\Delta_{k,\infty}(n)$ the minimum possible maximum degree of a $k$-additive spanner of $Q_n$, Arizumi–Hamburger–Kostochka showed that  $$\frac{n}{\ln n}e^{-4k}\leq \Delta_{2k,\infty}(n)\leq 20\frac{n}{\ln n}\ln \ln n.$$ We improve their upper bound by showing that     $$\Delta_{2k,\infty}(n)\leq 10^{4k} \frac{n}{\ln n}\ln^{(k+1)}n,$$where the last term denotes a $k+1$-fold iterated logarithm.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/9074</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2020-07, Vol.27 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-c6387aeacc6c189ab3edfb6d7288d6735b594b27e3c46b313e2d829ead2500e53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids></links><search><creatorcontrib>Nenadov, Rajko</creatorcontrib><creatorcontrib>Sawhney, Mehtab</creatorcontrib><creatorcontrib>Sudakov, Benny</creatorcontrib><creatorcontrib>Wagner, Adam Zsolt</creatorcontrib><title>Bounded Degree Spanners of the Hypercube</title><title>The Electronic journal of combinatorics</title><description> In this short note we study two questions about the existence of subgraphs of the hypercube $Q_n$ with certain properties. The first question, due to Erdős–Hamburger–Pippert–Weakley, asks whether there exists a bounded degree subgraph of $Q_n$ which has diameter $n$. We answer this question  by giving an explicit construction of such a subgraph with maximum degree at most 120. The second problem concerns properties of $k$-additive spanners of the hypercube, that is, subgraphs of $Q_n$ in which the distance between any two vertices is at most $k$ larger than in $Q_n$. Denoting by $\Delta_{k,\infty}(n)$ the minimum possible maximum degree of a $k$-additive spanner of $Q_n$, Arizumi–Hamburger–Kostochka showed that  $$\frac{n}{\ln n}e^{-4k}\leq \Delta_{2k,\infty}(n)\leq 20\frac{n}{\ln n}\ln \ln n.$$ We improve their upper bound by showing that     $$\Delta_{2k,\infty}(n)\leq 10^{4k} \frac{n}{\ln n}\ln^{(k+1)}n,$$where the last term denotes a $k+1$-fold iterated logarithm.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNj7tOAkEUQCdGEwH5h2lMbFZm7t15lYoCJiQWar2Zx10fgd3NDBT8PUEprM6pTnIYm0pxjwZQz5ww9QUbSWFMZR3oy39-zcal_AghwTk1YneP_b5LlPgTfWYi_jb4rqNceN_y3Rfx1WGgHPeBbthV6zeFpmdO2Mfi-X2-qtavy5f5w7qKAHJXRY3WePIx6iit8wEptUEnA9YmbVAF5eoAhjDWOqBEgmTBkU-ghCCFE3b71425LyVT2wz5e-vzoZGi-d1rTnt4BDuwQEM</recordid><startdate>20200710</startdate><enddate>20200710</enddate><creator>Nenadov, Rajko</creator><creator>Sawhney, Mehtab</creator><creator>Sudakov, Benny</creator><creator>Wagner, Adam Zsolt</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200710</creationdate><title>Bounded Degree Spanners of the Hypercube</title><author>Nenadov, Rajko ; Sawhney, Mehtab ; Sudakov, Benny ; Wagner, Adam Zsolt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-c6387aeacc6c189ab3edfb6d7288d6735b594b27e3c46b313e2d829ead2500e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nenadov, Rajko</creatorcontrib><creatorcontrib>Sawhney, Mehtab</creatorcontrib><creatorcontrib>Sudakov, Benny</creatorcontrib><creatorcontrib>Wagner, Adam Zsolt</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nenadov, Rajko</au><au>Sawhney, Mehtab</au><au>Sudakov, Benny</au><au>Wagner, Adam Zsolt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded Degree Spanners of the Hypercube</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2020-07-10</date><risdate>2020</risdate><volume>27</volume><issue>3</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract> In this short note we study two questions about the existence of subgraphs of the hypercube $Q_n$ with certain properties. The first question, due to Erdős–Hamburger–Pippert–Weakley, asks whether there exists a bounded degree subgraph of $Q_n$ which has diameter $n$. We answer this question  by giving an explicit construction of such a subgraph with maximum degree at most 120. The second problem concerns properties of $k$-additive spanners of the hypercube, that is, subgraphs of $Q_n$ in which the distance between any two vertices is at most $k$ larger than in $Q_n$. Denoting by $\Delta_{k,\infty}(n)$ the minimum possible maximum degree of a $k$-additive spanner of $Q_n$, Arizumi–Hamburger–Kostochka showed that  $$\frac{n}{\ln n}e^{-4k}\leq \Delta_{2k,\infty}(n)\leq 20\frac{n}{\ln n}\ln \ln n.$$ We improve their upper bound by showing that     $$\Delta_{2k,\infty}(n)\leq 10^{4k} \frac{n}{\ln n}\ln^{(k+1)}n,$$where the last term denotes a $k+1$-fold iterated logarithm.</abstract><doi>10.37236/9074</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2020-07, Vol.27 (3)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_9074
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Bounded Degree Spanners of the Hypercube
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded%20Degree%20Spanners%20of%20the%20Hypercube&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Nenadov,%20Rajko&rft.date=2020-07-10&rft.volume=27&rft.issue=3&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/9074&rft_dat=%3Ccrossref%3E10_37236_9074%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true