Non-Separating Planar Graphs

A graph $G$ is a non-separating planar graph if there is a drawing $D$ of $G$ on the plane such that (1) no two edges cross each other in $D$ and (2) for any cycle $C$ in $D$, any two vertices not in $C$ are on the same side of $C$ in $D$. Non-separating planar graphs are closed under taking minors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2021-01, Vol.28 (1)
Hauptverfasser: Dehkordi, Hooman R., Farr, Graham
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 28
creator Dehkordi, Hooman R.
Farr, Graham
description A graph $G$ is a non-separating planar graph if there is a drawing $D$ of $G$ on the plane such that (1) no two edges cross each other in $D$ and (2) for any cycle $C$ in $D$, any two vertices not in $C$ are on the same side of $C$ in $D$. Non-separating planar graphs are closed under taking minors and are a subclass of planar graphs and a superclass of outerplanar graphs. In this paper, we show that a graph is a non-separating planar graph if and only if it does not contain $K_1 \cup K_4$ or $K_1 \cup K_{2,3}$ or $K_{1,1,3}$ as a minor. Furthermore, we provide a structural characterisation of this class of graphs. More specifically, we show that any maximal non-separating planar graph is either an outerplanar graph or a wheel or it is a graph obtained from the disjoint union of two triangles by adding three vertex-disjoint paths between the two triangles. Lastly, to demonstrate an application of non-separating planar graphs, we use the characterisation of non-separating planar graphs to prove that there are maximal linkless graphs with $3n-3$ edges. Thus, maximal linkless graphs can have significantly fewer edges than maximum linkless graphs; Sachs exhibited linkless graphs with $n$ vertices and $4n-10$ edges (the maximum possible) in 1983.
doi_str_mv 10.37236/8816
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_8816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_8816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-a43147045ec5f6c1e21c661a746786356dc053fc3e2ddf4dc4e2aeefc2eaef693</originalsourceid><addsrcrecordid>eNpNj01LAzEQQIMoWGv_gYdePEYzk2Sye5SiVSgqtJ6XYXailbpdkl789-LHwdN7pwfPmBm4K5_Q03XTAB2ZCbiUbNMiHf_zU3NW67tzgG0bJ-bicT_YtY5c-LAdXufPOx64zJeFx7d6bk4y76rO_jg1L3e3m8W9XT0tHxY3KysY8WA5eAjJhagSMwkoghABp0CpIR-pFxd9Fq_Y9zn0EhRZNQsqa6bWT83lb1fKvtaiuRvL9oPLZweu-1nqvpf8F6rMPE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-Separating Planar Graphs</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dehkordi, Hooman R. ; Farr, Graham</creator><creatorcontrib>Dehkordi, Hooman R. ; Farr, Graham</creatorcontrib><description>A graph $G$ is a non-separating planar graph if there is a drawing $D$ of $G$ on the plane such that (1) no two edges cross each other in $D$ and (2) for any cycle $C$ in $D$, any two vertices not in $C$ are on the same side of $C$ in $D$. Non-separating planar graphs are closed under taking minors and are a subclass of planar graphs and a superclass of outerplanar graphs. In this paper, we show that a graph is a non-separating planar graph if and only if it does not contain $K_1 \cup K_4$ or $K_1 \cup K_{2,3}$ or $K_{1,1,3}$ as a minor. Furthermore, we provide a structural characterisation of this class of graphs. More specifically, we show that any maximal non-separating planar graph is either an outerplanar graph or a wheel or it is a graph obtained from the disjoint union of two triangles by adding three vertex-disjoint paths between the two triangles. Lastly, to demonstrate an application of non-separating planar graphs, we use the characterisation of non-separating planar graphs to prove that there are maximal linkless graphs with $3n-3$ edges. Thus, maximal linkless graphs can have significantly fewer edges than maximum linkless graphs; Sachs exhibited linkless graphs with $n$ vertices and $4n-10$ edges (the maximum possible) in 1983.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/8816</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2021-01, Vol.28 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-a43147045ec5f6c1e21c661a746786356dc053fc3e2ddf4dc4e2aeefc2eaef693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Dehkordi, Hooman R.</creatorcontrib><creatorcontrib>Farr, Graham</creatorcontrib><title>Non-Separating Planar Graphs</title><title>The Electronic journal of combinatorics</title><description>A graph $G$ is a non-separating planar graph if there is a drawing $D$ of $G$ on the plane such that (1) no two edges cross each other in $D$ and (2) for any cycle $C$ in $D$, any two vertices not in $C$ are on the same side of $C$ in $D$. Non-separating planar graphs are closed under taking minors and are a subclass of planar graphs and a superclass of outerplanar graphs. In this paper, we show that a graph is a non-separating planar graph if and only if it does not contain $K_1 \cup K_4$ or $K_1 \cup K_{2,3}$ or $K_{1,1,3}$ as a minor. Furthermore, we provide a structural characterisation of this class of graphs. More specifically, we show that any maximal non-separating planar graph is either an outerplanar graph or a wheel or it is a graph obtained from the disjoint union of two triangles by adding three vertex-disjoint paths between the two triangles. Lastly, to demonstrate an application of non-separating planar graphs, we use the characterisation of non-separating planar graphs to prove that there are maximal linkless graphs with $3n-3$ edges. Thus, maximal linkless graphs can have significantly fewer edges than maximum linkless graphs; Sachs exhibited linkless graphs with $n$ vertices and $4n-10$ edges (the maximum possible) in 1983.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEQQIMoWGv_gYdePEYzk2Sye5SiVSgqtJ6XYXailbpdkl789-LHwdN7pwfPmBm4K5_Q03XTAB2ZCbiUbNMiHf_zU3NW67tzgG0bJ-bicT_YtY5c-LAdXufPOx64zJeFx7d6bk4y76rO_jg1L3e3m8W9XT0tHxY3KysY8WA5eAjJhagSMwkoghABp0CpIR-pFxd9Fq_Y9zn0EhRZNQsqa6bWT83lb1fKvtaiuRvL9oPLZweu-1nqvpf8F6rMPE0</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Dehkordi, Hooman R.</creator><creator>Farr, Graham</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210115</creationdate><title>Non-Separating Planar Graphs</title><author>Dehkordi, Hooman R. ; Farr, Graham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-a43147045ec5f6c1e21c661a746786356dc053fc3e2ddf4dc4e2aeefc2eaef693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehkordi, Hooman R.</creatorcontrib><creatorcontrib>Farr, Graham</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehkordi, Hooman R.</au><au>Farr, Graham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Separating Planar Graphs</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>A graph $G$ is a non-separating planar graph if there is a drawing $D$ of $G$ on the plane such that (1) no two edges cross each other in $D$ and (2) for any cycle $C$ in $D$, any two vertices not in $C$ are on the same side of $C$ in $D$. Non-separating planar graphs are closed under taking minors and are a subclass of planar graphs and a superclass of outerplanar graphs. In this paper, we show that a graph is a non-separating planar graph if and only if it does not contain $K_1 \cup K_4$ or $K_1 \cup K_{2,3}$ or $K_{1,1,3}$ as a minor. Furthermore, we provide a structural characterisation of this class of graphs. More specifically, we show that any maximal non-separating planar graph is either an outerplanar graph or a wheel or it is a graph obtained from the disjoint union of two triangles by adding three vertex-disjoint paths between the two triangles. Lastly, to demonstrate an application of non-separating planar graphs, we use the characterisation of non-separating planar graphs to prove that there are maximal linkless graphs with $3n-3$ edges. Thus, maximal linkless graphs can have significantly fewer edges than maximum linkless graphs; Sachs exhibited linkless graphs with $n$ vertices and $4n-10$ edges (the maximum possible) in 1983.</abstract><doi>10.37236/8816</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2021-01, Vol.28 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_8816
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Non-Separating Planar Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Separating%20Planar%20Graphs&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Dehkordi,%20Hooman%20R.&rft.date=2021-01-15&rft.volume=28&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/8816&rft_dat=%3Ccrossref%3E10_37236_8816%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true