Universally Image Partition Regularity
Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other sub...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2008-11, Vol.15 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 15 |
creator | De, Dibyendu Paul, Ram Krishna |
description | Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other subsemigroups of $({\Bbb R},+)$. In this paper we introduce a new notion which we call universally image partition regular matrices, which are in fact image partition regular over all semigroups and everywhere. We also prove that such matrices exist in abundance. |
doi_str_mv | 10.37236/865 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-d952963401e1b440bb1b7c974b0787f5d5adb4aff87c81c77f1c92797618421b3</originalsourceid><addsrcrecordid>eNpNj81KAzEYRYNU6O87zELcjebL35cspdhaKChi10OSSUpk2koyCvP2ltaFq3M358IhZA70gSPj6lEreUMmQBFrbZga_dtjMi3lk1JgxsgJud8d00_IxXbdUG0Odh-qN5v71KfTsXoP--_O5tQPc3IbbVfC4o8zsls9fyxf6u3rerN82tYetOjr1khmFBcUAjghqHPg0BsUjqLGKFtpWydsjBq9Bo8YwRuGBtVZZ-D4jNxdf30-lZJDbL5yOtg8NECbS1tzbuO_ZPo_DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universally Image Partition Regularity</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De, Dibyendu ; Paul, Ram Krishna</creator><creatorcontrib>De, Dibyendu ; Paul, Ram Krishna</creatorcontrib><description>Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other subsemigroups of $({\Bbb R},+)$. In this paper we introduce a new notion which we call universally image partition regular matrices, which are in fact image partition regular over all semigroups and everywhere. We also prove that such matrices exist in abundance.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/865</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2008-11, Vol.15 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>De, Dibyendu</creatorcontrib><creatorcontrib>Paul, Ram Krishna</creatorcontrib><title>Universally Image Partition Regularity</title><title>The Electronic journal of combinatorics</title><description>Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other subsemigroups of $({\Bbb R},+)$. In this paper we introduce a new notion which we call universally image partition regular matrices, which are in fact image partition regular over all semigroups and everywhere. We also prove that such matrices exist in abundance.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNj81KAzEYRYNU6O87zELcjebL35cspdhaKChi10OSSUpk2koyCvP2ltaFq3M358IhZA70gSPj6lEreUMmQBFrbZga_dtjMi3lk1JgxsgJud8d00_IxXbdUG0Odh-qN5v71KfTsXoP--_O5tQPc3IbbVfC4o8zsls9fyxf6u3rerN82tYetOjr1khmFBcUAjghqHPg0BsUjqLGKFtpWydsjBq9Bo8YwRuGBtVZZ-D4jNxdf30-lZJDbL5yOtg8NECbS1tzbuO_ZPo_DA</recordid><startdate>20081114</startdate><enddate>20081114</enddate><creator>De, Dibyendu</creator><creator>Paul, Ram Krishna</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081114</creationdate><title>Universally Image Partition Regularity</title><author>De, Dibyendu ; Paul, Ram Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-d952963401e1b440bb1b7c974b0787f5d5adb4aff87c81c77f1c92797618421b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Dibyendu</creatorcontrib><creatorcontrib>Paul, Ram Krishna</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Dibyendu</au><au>Paul, Ram Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universally Image Partition Regularity</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2008-11-14</date><risdate>2008</risdate><volume>15</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other subsemigroups of $({\Bbb R},+)$. In this paper we introduce a new notion which we call universally image partition regular matrices, which are in fact image partition regular over all semigroups and everywhere. We also prove that such matrices exist in abundance.</abstract><doi>10.37236/865</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2008-11, Vol.15 (1) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_865 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Universally Image Partition Regularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universally%20Image%20Partition%20Regularity&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=De,%20Dibyendu&rft.date=2008-11-14&rft.volume=15&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/865&rft_dat=%3Ccrossref%3E10_37236_865%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |