Universally Image Partition Regularity

Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2008-11, Vol.15 (1)
Hauptverfasser: De, Dibyendu, Paul, Ram Krishna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 15
creator De, Dibyendu
Paul, Ram Krishna
description Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other subsemigroups of $({\Bbb R},+)$. In this paper we introduce a new notion which we call universally image partition regular matrices, which are in fact image partition regular over all semigroups and everywhere. We also prove that such matrices exist in abundance.
doi_str_mv 10.37236/865
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-d952963401e1b440bb1b7c974b0787f5d5adb4aff87c81c77f1c92797618421b3</originalsourceid><addsrcrecordid>eNpNj81KAzEYRYNU6O87zELcjebL35cspdhaKChi10OSSUpk2koyCvP2ltaFq3M358IhZA70gSPj6lEreUMmQBFrbZga_dtjMi3lk1JgxsgJud8d00_IxXbdUG0Odh-qN5v71KfTsXoP--_O5tQPc3IbbVfC4o8zsls9fyxf6u3rerN82tYetOjr1khmFBcUAjghqHPg0BsUjqLGKFtpWydsjBq9Bo8YwRuGBtVZZ-D4jNxdf30-lZJDbL5yOtg8NECbS1tzbuO_ZPo_DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universally Image Partition Regularity</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De, Dibyendu ; Paul, Ram Krishna</creator><creatorcontrib>De, Dibyendu ; Paul, Ram Krishna</creatorcontrib><description>Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other subsemigroups of $({\Bbb R},+)$. In this paper we introduce a new notion which we call universally image partition regular matrices, which are in fact image partition regular over all semigroups and everywhere. We also prove that such matrices exist in abundance.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/865</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2008-11, Vol.15 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>De, Dibyendu</creatorcontrib><creatorcontrib>Paul, Ram Krishna</creatorcontrib><title>Universally Image Partition Regularity</title><title>The Electronic journal of combinatorics</title><description>Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other subsemigroups of $({\Bbb R},+)$. In this paper we introduce a new notion which we call universally image partition regular matrices, which are in fact image partition regular over all semigroups and everywhere. We also prove that such matrices exist in abundance.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNj81KAzEYRYNU6O87zELcjebL35cspdhaKChi10OSSUpk2koyCvP2ltaFq3M358IhZA70gSPj6lEreUMmQBFrbZga_dtjMi3lk1JgxsgJud8d00_IxXbdUG0Odh-qN5v71KfTsXoP--_O5tQPc3IbbVfC4o8zsls9fyxf6u3rerN82tYetOjr1khmFBcUAjghqHPg0BsUjqLGKFtpWydsjBq9Bo8YwRuGBtVZZ-D4jNxdf30-lZJDbL5yOtg8NECbS1tzbuO_ZPo_DA</recordid><startdate>20081114</startdate><enddate>20081114</enddate><creator>De, Dibyendu</creator><creator>Paul, Ram Krishna</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081114</creationdate><title>Universally Image Partition Regularity</title><author>De, Dibyendu ; Paul, Ram Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-d952963401e1b440bb1b7c974b0787f5d5adb4aff87c81c77f1c92797618421b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Dibyendu</creatorcontrib><creatorcontrib>Paul, Ram Krishna</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Dibyendu</au><au>Paul, Ram Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universally Image Partition Regularity</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2008-11-14</date><risdate>2008</risdate><volume>15</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Many of the classical results of Ramsey Theory, for example Schur's Theorem, van der Waerden's Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over ${\Bbb N}$ and other subsemigroups of $({\Bbb R},+)$. In this paper we introduce a new notion which we call universally image partition regular matrices, which are in fact image partition regular over all semigroups and everywhere. We also prove that such matrices exist in abundance.</abstract><doi>10.37236/865</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2008-11, Vol.15 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_865
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Universally Image Partition Regularity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universally%20Image%20Partition%20Regularity&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=De,%20Dibyendu&rft.date=2008-11-14&rft.volume=15&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/865&rft_dat=%3Ccrossref%3E10_37236_865%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true