Circular Repetition Thresholds on Some Small Alphabets: Last Cases of Gorbunova's Conjecture
A word is called $\beta$-free if it has no factors of exponent greater than or equal to $\beta$. The repetition threshold $\mbox{RT}(k)$ is the infimum of the set of all $\beta$ such that there are arbitrarily long $k$-ary $\beta$-free words (or equivalently, there are $k$-ary $\beta$-free words of...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2019-05, Vol.26 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 26 |
creator | Currie, James D. Mol, Lucas Rampersad, Narad |
description | A word is called $\beta$-free if it has no factors of exponent greater than or equal to $\beta$. The repetition threshold $\mbox{RT}(k)$ is the infimum of the set of all $\beta$ such that there are arbitrarily long $k$-ary $\beta$-free words (or equivalently, there are $k$-ary $\beta$-free words of every sufficiently large length, or even every length). These three equivalent definitions of the repetition threshold give rise to three natural definitions of a repetition threshold for circular words. The infimum of the set of all $\beta$ such that
there are arbitrarily long $k$-ary $\beta$-free circular words is called the weak circular repetition threshold, denoted $\mbox{CRT}_\mbox{W}(k)$;
there are $k$-ary $\beta$-free circular words of every sufficiently large length is called the intermediate circular repetition threshold, denoted $\mbox{CRT}_\mbox{I}(k)$;
there are $k$-ary $\beta$-free circular words of every length is called the strong circular repetition threshold, denoted $\mbox{CRT}_\mbox{S}(k)$.
We prove that $\mbox{CRT}_\mbox{S}(4)=\tfrac{3}{2}$ and $\mbox{CRT}_\mbox{S}(5)=\tfrac{4}{3}$, confirming a conjecture of Gorbunova and providing the last unknown values of the strong circular repetition threshold. We also prove that $\mbox{CRT}_\mbox{S}(3)=\mbox{CRT}_\mbox{W}(3)=\mbox{RT}(3)=\tfrac{7}{4}$.
|
doi_str_mv | 10.37236/7985 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_7985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_7985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-e08cc693cd0c8db68916edcbd186f753e7228363bcfe6a4874d49c5633a5a0a13</originalsourceid><addsrcrecordid>eNpNkEtLw0AYRQdRsNb-h9mIq-g8Mi93JWgVAoKtOyFMZr6QlCRTZhLBf2-rLlzde-FwFwehFSV3XDEu75XR4gwtKFEq04bJ83_9El2ltCeEMmPEAn0UXXRzbyN-gwNM3dSFEe_aCKkNvU_4uLZhALwdbN_jdX9obQ1TesClTRMubIIj0-BNiPU8hk97m3ARxj24aY5wjS4a2ydY_eUSvT897ornrHzdvBTrMnNMsCkDop2ThjtPnPa11IZK8K72VMtGCQ6KMc0lr10D0uZa5T43TkjOrbDEUr5EN7-_LoaUIjTVIXaDjV8VJdWPkuqkhH8DCsdTdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Circular Repetition Thresholds on Some Small Alphabets: Last Cases of Gorbunova's Conjecture</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Currie, James D. ; Mol, Lucas ; Rampersad, Narad</creator><creatorcontrib>Currie, James D. ; Mol, Lucas ; Rampersad, Narad</creatorcontrib><description>A word is called $\beta$-free if it has no factors of exponent greater than or equal to $\beta$. The repetition threshold $\mbox{RT}(k)$ is the infimum of the set of all $\beta$ such that there are arbitrarily long $k$-ary $\beta$-free words (or equivalently, there are $k$-ary $\beta$-free words of every sufficiently large length, or even every length). These three equivalent definitions of the repetition threshold give rise to three natural definitions of a repetition threshold for circular words. The infimum of the set of all $\beta$ such that
there are arbitrarily long $k$-ary $\beta$-free circular words is called the weak circular repetition threshold, denoted $\mbox{CRT}_\mbox{W}(k)$;
there are $k$-ary $\beta$-free circular words of every sufficiently large length is called the intermediate circular repetition threshold, denoted $\mbox{CRT}_\mbox{I}(k)$;
there are $k$-ary $\beta$-free circular words of every length is called the strong circular repetition threshold, denoted $\mbox{CRT}_\mbox{S}(k)$.
We prove that $\mbox{CRT}_\mbox{S}(4)=\tfrac{3}{2}$ and $\mbox{CRT}_\mbox{S}(5)=\tfrac{4}{3}$, confirming a conjecture of Gorbunova and providing the last unknown values of the strong circular repetition threshold. We also prove that $\mbox{CRT}_\mbox{S}(3)=\mbox{CRT}_\mbox{W}(3)=\mbox{RT}(3)=\tfrac{7}{4}$.
</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/7985</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2019-05, Vol.26 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-e08cc693cd0c8db68916edcbd186f753e7228363bcfe6a4874d49c5633a5a0a13</citedby><orcidid>0000-0002-4295-0632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Currie, James D.</creatorcontrib><creatorcontrib>Mol, Lucas</creatorcontrib><creatorcontrib>Rampersad, Narad</creatorcontrib><title>Circular Repetition Thresholds on Some Small Alphabets: Last Cases of Gorbunova's Conjecture</title><title>The Electronic journal of combinatorics</title><description>A word is called $\beta$-free if it has no factors of exponent greater than or equal to $\beta$. The repetition threshold $\mbox{RT}(k)$ is the infimum of the set of all $\beta$ such that there are arbitrarily long $k$-ary $\beta$-free words (or equivalently, there are $k$-ary $\beta$-free words of every sufficiently large length, or even every length). These three equivalent definitions of the repetition threshold give rise to three natural definitions of a repetition threshold for circular words. The infimum of the set of all $\beta$ such that
there are arbitrarily long $k$-ary $\beta$-free circular words is called the weak circular repetition threshold, denoted $\mbox{CRT}_\mbox{W}(k)$;
there are $k$-ary $\beta$-free circular words of every sufficiently large length is called the intermediate circular repetition threshold, denoted $\mbox{CRT}_\mbox{I}(k)$;
there are $k$-ary $\beta$-free circular words of every length is called the strong circular repetition threshold, denoted $\mbox{CRT}_\mbox{S}(k)$.
We prove that $\mbox{CRT}_\mbox{S}(4)=\tfrac{3}{2}$ and $\mbox{CRT}_\mbox{S}(5)=\tfrac{4}{3}$, confirming a conjecture of Gorbunova and providing the last unknown values of the strong circular repetition threshold. We also prove that $\mbox{CRT}_\mbox{S}(3)=\mbox{CRT}_\mbox{W}(3)=\mbox{RT}(3)=\tfrac{7}{4}$.
</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AYRQdRsNb-h9mIq-g8Mi93JWgVAoKtOyFMZr6QlCRTZhLBf2-rLlzde-FwFwehFSV3XDEu75XR4gwtKFEq04bJ83_9El2ltCeEMmPEAn0UXXRzbyN-gwNM3dSFEe_aCKkNvU_4uLZhALwdbN_jdX9obQ1TesClTRMubIIj0-BNiPU8hk97m3ARxj24aY5wjS4a2ydY_eUSvT897ornrHzdvBTrMnNMsCkDop2ThjtPnPa11IZK8K72VMtGCQ6KMc0lr10D0uZa5T43TkjOrbDEUr5EN7-_LoaUIjTVIXaDjV8VJdWPkuqkhH8DCsdTdQ</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Currie, James D.</creator><creator>Mol, Lucas</creator><creator>Rampersad, Narad</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4295-0632</orcidid></search><sort><creationdate>20190531</creationdate><title>Circular Repetition Thresholds on Some Small Alphabets: Last Cases of Gorbunova's Conjecture</title><author>Currie, James D. ; Mol, Lucas ; Rampersad, Narad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-e08cc693cd0c8db68916edcbd186f753e7228363bcfe6a4874d49c5633a5a0a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Currie, James D.</creatorcontrib><creatorcontrib>Mol, Lucas</creatorcontrib><creatorcontrib>Rampersad, Narad</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Currie, James D.</au><au>Mol, Lucas</au><au>Rampersad, Narad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circular Repetition Thresholds on Some Small Alphabets: Last Cases of Gorbunova's Conjecture</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2019-05-31</date><risdate>2019</risdate><volume>26</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>A word is called $\beta$-free if it has no factors of exponent greater than or equal to $\beta$. The repetition threshold $\mbox{RT}(k)$ is the infimum of the set of all $\beta$ such that there are arbitrarily long $k$-ary $\beta$-free words (or equivalently, there are $k$-ary $\beta$-free words of every sufficiently large length, or even every length). These three equivalent definitions of the repetition threshold give rise to three natural definitions of a repetition threshold for circular words. The infimum of the set of all $\beta$ such that
there are arbitrarily long $k$-ary $\beta$-free circular words is called the weak circular repetition threshold, denoted $\mbox{CRT}_\mbox{W}(k)$;
there are $k$-ary $\beta$-free circular words of every sufficiently large length is called the intermediate circular repetition threshold, denoted $\mbox{CRT}_\mbox{I}(k)$;
there are $k$-ary $\beta$-free circular words of every length is called the strong circular repetition threshold, denoted $\mbox{CRT}_\mbox{S}(k)$.
We prove that $\mbox{CRT}_\mbox{S}(4)=\tfrac{3}{2}$ and $\mbox{CRT}_\mbox{S}(5)=\tfrac{4}{3}$, confirming a conjecture of Gorbunova and providing the last unknown values of the strong circular repetition threshold. We also prove that $\mbox{CRT}_\mbox{S}(3)=\mbox{CRT}_\mbox{W}(3)=\mbox{RT}(3)=\tfrac{7}{4}$.
</abstract><doi>10.37236/7985</doi><orcidid>https://orcid.org/0000-0002-4295-0632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2019-05, Vol.26 (2) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_7985 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Circular Repetition Thresholds on Some Small Alphabets: Last Cases of Gorbunova's Conjecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circular%20Repetition%20Thresholds%20on%20Some%20Small%20Alphabets:%20Last%20Cases%20of%20Gorbunova's%20Conjecture&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Currie,%20James%20D.&rft.date=2019-05-31&rft.volume=26&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/7985&rft_dat=%3Ccrossref%3E10_37236_7985%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |