Large Holes in Quasi-Random Graphs

Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2008-04, Vol.15 (1)
1. Verfasser: Polcyn, Joanna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 15
creator Polcyn, Joanna
description Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated.
doi_str_mv 10.37236/784
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c134t-567f0818df248f295e5a00888058224b5f106a1a4da05eb14fd6b7512100f0bc3</originalsourceid><addsrcrecordid>eNpNj01Lw0AUABdRsLb-h1C8rr63ny_HUmwrBETRc3hJdjXSNmVXD_33LW0PnmZOAyPEBOFRe6XdkydzJUYI3ksqlbv-57fiLucfAFRlaUdiWnH6CsVqWIdc9Nvi7Y9zL9952w2bYpl4950n4ibyOof7C8fic_H8MV_J6nX5Mp9VskVtfqV1PgIhdVEZiqq0wTIAEYElpUxjI4JjZNMx2NCgiZ1rvEWFABGaVo_Fw7nbpiHnFGK9S_2G075GqE9f9fFLHwBb_jwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large Holes in Quasi-Random Graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Polcyn, Joanna</creator><creatorcontrib>Polcyn, Joanna</creatorcontrib><description>Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/784</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2008-04, Vol.15 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c134t-567f0818df248f295e5a00888058224b5f106a1a4da05eb14fd6b7512100f0bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Polcyn, Joanna</creatorcontrib><title>Large Holes in Quasi-Random Graphs</title><title>The Electronic journal of combinatorics</title><description>Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNj01Lw0AUABdRsLb-h1C8rr63ny_HUmwrBETRc3hJdjXSNmVXD_33LW0PnmZOAyPEBOFRe6XdkydzJUYI3ksqlbv-57fiLucfAFRlaUdiWnH6CsVqWIdc9Nvi7Y9zL9952w2bYpl4950n4ibyOof7C8fic_H8MV_J6nX5Mp9VskVtfqV1PgIhdVEZiqq0wTIAEYElpUxjI4JjZNMx2NCgiZ1rvEWFABGaVo_Fw7nbpiHnFGK9S_2G075GqE9f9fFLHwBb_jwc</recordid><startdate>20080418</startdate><enddate>20080418</enddate><creator>Polcyn, Joanna</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080418</creationdate><title>Large Holes in Quasi-Random Graphs</title><author>Polcyn, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c134t-567f0818df248f295e5a00888058224b5f106a1a4da05eb14fd6b7512100f0bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polcyn, Joanna</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polcyn, Joanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Holes in Quasi-Random Graphs</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2008-04-18</date><risdate>2008</risdate><volume>15</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated.</abstract><doi>10.37236/784</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2008-04, Vol.15 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_784
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Large Holes in Quasi-Random Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Holes%20in%20Quasi-Random%20Graphs&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Polcyn,%20Joanna&rft.date=2008-04-18&rft.volume=15&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/784&rft_dat=%3Ccrossref%3E10_37236_784%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true