Large Holes in Quasi-Random Graphs
Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of suc...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2008-04, Vol.15 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 15 |
creator | Polcyn, Joanna |
description | Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated. |
doi_str_mv | 10.37236/784 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c134t-567f0818df248f295e5a00888058224b5f106a1a4da05eb14fd6b7512100f0bc3</originalsourceid><addsrcrecordid>eNpNj01Lw0AUABdRsLb-h1C8rr63ny_HUmwrBETRc3hJdjXSNmVXD_33LW0PnmZOAyPEBOFRe6XdkydzJUYI3ksqlbv-57fiLucfAFRlaUdiWnH6CsVqWIdc9Nvi7Y9zL9952w2bYpl4950n4ibyOof7C8fic_H8MV_J6nX5Mp9VskVtfqV1PgIhdVEZiqq0wTIAEYElpUxjI4JjZNMx2NCgiZ1rvEWFABGaVo_Fw7nbpiHnFGK9S_2G075GqE9f9fFLHwBb_jwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large Holes in Quasi-Random Graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Polcyn, Joanna</creator><creatorcontrib>Polcyn, Joanna</creatorcontrib><description>Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/784</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2008-04, Vol.15 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c134t-567f0818df248f295e5a00888058224b5f106a1a4da05eb14fd6b7512100f0bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Polcyn, Joanna</creatorcontrib><title>Large Holes in Quasi-Random Graphs</title><title>The Electronic journal of combinatorics</title><description>Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNj01Lw0AUABdRsLb-h1C8rr63ny_HUmwrBETRc3hJdjXSNmVXD_33LW0PnmZOAyPEBOFRe6XdkydzJUYI3ksqlbv-57fiLucfAFRlaUdiWnH6CsVqWIdc9Nvi7Y9zL9952w2bYpl4950n4ibyOof7C8fic_H8MV_J6nX5Mp9VskVtfqV1PgIhdVEZiqq0wTIAEYElpUxjI4JjZNMx2NCgiZ1rvEWFABGaVo_Fw7nbpiHnFGK9S_2G075GqE9f9fFLHwBb_jwc</recordid><startdate>20080418</startdate><enddate>20080418</enddate><creator>Polcyn, Joanna</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080418</creationdate><title>Large Holes in Quasi-Random Graphs</title><author>Polcyn, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c134t-567f0818df248f295e5a00888058224b5f106a1a4da05eb14fd6b7512100f0bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polcyn, Joanna</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polcyn, Joanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Holes in Quasi-Random Graphs</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2008-04-18</date><risdate>2008</risdate><volume>15</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated.</abstract><doi>10.37236/784</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2008-04, Vol.15 (1) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_784 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Large Holes in Quasi-Random Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Holes%20in%20Quasi-Random%20Graphs&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Polcyn,%20Joanna&rft.date=2008-04-18&rft.volume=15&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/784&rft_dat=%3Ccrossref%3E10_37236_784%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |