Shellability of Posets of Labeled Partitions and Arrangements Defined by Root Systems
We prove that the posets of connected components of intersections of toric and elliptic arrangements defined by root systems are EL-shellable and we compute their homotopy type. Our method rests on Bibby's description of such posets by means of "labeled partitions": after giving an EL...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2019-10, Vol.26 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 26 |
creator | Delucchi, Emanuele Girard, Noriane Paolini, Giovanni |
description | We prove that the posets of connected components of intersections of toric and elliptic arrangements defined by root systems are EL-shellable and we compute their homotopy type. Our method rests on Bibby's description of such posets by means of "labeled partitions": after giving an EL-labeling and counting homology chains for general posets of labeled partitions, we obtain the stated results by considering the appropriate subposets. |
doi_str_mv | 10.37236/7160 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_7160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_7160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-7bcff41370b4437aabc72afcf1556d8efd39b56da080f283a25274c54b2b196c3</originalsourceid><addsrcrecordid>eNpNkL1OwzAYRS0EEqXtO3hhDPgniZOxKj9FikRF2zn67HwGoyRGtpe8PSkwMN0zHN3hELLm7E4qIct7xUt2QRacKZVVtSgv__E1uYnxkzEu6rpYkNPhA_setOtdmqi3dO8jpnimBjT22NE9hOSS82OkMHZ0EwKM7zjgOGsPaN04O3qib94nephiwiGuyJWFPuL6b5fk9PR43O6y5vX5ZbtpMiMET5nSxtqcS8V0nksFoI0SYI3lRVF2FdpO1nomYBWzopIgCqFyU-RaaF6XRi7J7e-vCT7GgLb9Cm6AMLWctT8t2nML-Q2RWlEi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shellability of Posets of Labeled Partitions and Arrangements Defined by Root Systems</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Delucchi, Emanuele ; Girard, Noriane ; Paolini, Giovanni</creator><creatorcontrib>Delucchi, Emanuele ; Girard, Noriane ; Paolini, Giovanni</creatorcontrib><description>We prove that the posets of connected components of intersections of toric and elliptic arrangements defined by root systems are EL-shellable and we compute their homotopy type. Our method rests on Bibby's description of such posets by means of "labeled partitions": after giving an EL-labeling and counting homology chains for general posets of labeled partitions, we obtain the stated results by considering the appropriate subposets.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/7160</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2019-10, Vol.26 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-7bcff41370b4437aabc72afcf1556d8efd39b56da080f283a25274c54b2b196c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids></links><search><creatorcontrib>Delucchi, Emanuele</creatorcontrib><creatorcontrib>Girard, Noriane</creatorcontrib><creatorcontrib>Paolini, Giovanni</creatorcontrib><title>Shellability of Posets of Labeled Partitions and Arrangements Defined by Root Systems</title><title>The Electronic journal of combinatorics</title><description>We prove that the posets of connected components of intersections of toric and elliptic arrangements defined by root systems are EL-shellable and we compute their homotopy type. Our method rests on Bibby's description of such posets by means of "labeled partitions": after giving an EL-labeling and counting homology chains for general posets of labeled partitions, we obtain the stated results by considering the appropriate subposets.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkL1OwzAYRS0EEqXtO3hhDPgniZOxKj9FikRF2zn67HwGoyRGtpe8PSkwMN0zHN3hELLm7E4qIct7xUt2QRacKZVVtSgv__E1uYnxkzEu6rpYkNPhA_setOtdmqi3dO8jpnimBjT22NE9hOSS82OkMHZ0EwKM7zjgOGsPaN04O3qib94nephiwiGuyJWFPuL6b5fk9PR43O6y5vX5ZbtpMiMET5nSxtqcS8V0nksFoI0SYI3lRVF2FdpO1nomYBWzopIgCqFyU-RaaF6XRi7J7e-vCT7GgLb9Cm6AMLWctT8t2nML-Q2RWlEi</recordid><startdate>20191011</startdate><enddate>20191011</enddate><creator>Delucchi, Emanuele</creator><creator>Girard, Noriane</creator><creator>Paolini, Giovanni</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191011</creationdate><title>Shellability of Posets of Labeled Partitions and Arrangements Defined by Root Systems</title><author>Delucchi, Emanuele ; Girard, Noriane ; Paolini, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-7bcff41370b4437aabc72afcf1556d8efd39b56da080f283a25274c54b2b196c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delucchi, Emanuele</creatorcontrib><creatorcontrib>Girard, Noriane</creatorcontrib><creatorcontrib>Paolini, Giovanni</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delucchi, Emanuele</au><au>Girard, Noriane</au><au>Paolini, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shellability of Posets of Labeled Partitions and Arrangements Defined by Root Systems</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2019-10-11</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We prove that the posets of connected components of intersections of toric and elliptic arrangements defined by root systems are EL-shellable and we compute their homotopy type. Our method rests on Bibby's description of such posets by means of "labeled partitions": after giving an EL-labeling and counting homology chains for general posets of labeled partitions, we obtain the stated results by considering the appropriate subposets.</abstract><doi>10.37236/7160</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2019-10, Vol.26 (4) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_7160 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Shellability of Posets of Labeled Partitions and Arrangements Defined by Root Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shellability%20of%20Posets%20of%20Labeled%20Partitions%20and%20Arrangements%20Defined%20by%20Root%20Systems&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Delucchi,%20Emanuele&rft.date=2019-10-11&rft.volume=26&rft.issue=4&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/7160&rft_dat=%3Ccrossref%3E10_37236_7160%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |