Covers of D-Type Artin Groups

We study certain quotients of generalized Artin groups which have a natural map onto D-type Artin groups, where the generalized Artin group $A(T)$ is defined by a signed graph $T$. Then we find a certain quotient $G(T)$ according to the graph $T$, which also have a natural map onto $A(D_n)$. We prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2017-10, Vol.24 (4)
Hauptverfasser: Amram, Meirav, Shwartz, Robert, Teicher, Mina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title The Electronic journal of combinatorics
container_volume 24
creator Amram, Meirav
Shwartz, Robert
Teicher, Mina
description We study certain quotients of generalized Artin groups which have a natural map onto D-type Artin groups, where the generalized Artin group $A(T)$ is defined by a signed graph $T$. Then we find a certain quotient $G(T)$ according to the graph $T$, which also have a natural map onto $A(D_n)$. We prove that $G(T)$ is isomorphic to a semidirect product of a group $K^{(m,n)}$, with the Artin group $A(D_n)$, where $K^{(m,n)}$ depends only on the number $m$ of cycles and on the number $n$ of vertices of the graph $T$.
doi_str_mv 10.37236/6146
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_6146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_6146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-ecd5f5c19518764a21544e2e48e68715976ff575d48876effd1e97f784d56c1f3</originalsourceid><addsrcrecordid>eNpNj81KAzEURkOxYG37CMJsXEZzM8m9ybKMWoWCm7oehsy9ULHOkFShb9_6s3B1PjjwwVFqCea2JlvjHYLDiZqBIdIhWrz4ty_VVSlvxoCN0c_UdTN8cS7VINW93h5Hrlb5sPuo1nn4HMtCTaV7L7z841y9Pj5smye9eVk_N6uNThbwoDn1XnyC6CEQus6Cd44tu8AYCHwkFPHkexfOnkV64EhCwfUeE0g9Vze_vykPpWSWdsy7fZePLZj2p6n9bqpPeZo7JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Covers of D-Type Artin Groups</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Amram, Meirav ; Shwartz, Robert ; Teicher, Mina</creator><creatorcontrib>Amram, Meirav ; Shwartz, Robert ; Teicher, Mina</creatorcontrib><description>We study certain quotients of generalized Artin groups which have a natural map onto D-type Artin groups, where the generalized Artin group $A(T)$ is defined by a signed graph $T$. Then we find a certain quotient $G(T)$ according to the graph $T$, which also have a natural map onto $A(D_n)$. We prove that $G(T)$ is isomorphic to a semidirect product of a group $K^{(m,n)}$, with the Artin group $A(D_n)$, where $K^{(m,n)}$ depends only on the number $m$ of cycles and on the number $n$ of vertices of the graph $T$.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/6146</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2017-10, Vol.24 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Amram, Meirav</creatorcontrib><creatorcontrib>Shwartz, Robert</creatorcontrib><creatorcontrib>Teicher, Mina</creatorcontrib><title>Covers of D-Type Artin Groups</title><title>The Electronic journal of combinatorics</title><description>We study certain quotients of generalized Artin groups which have a natural map onto D-type Artin groups, where the generalized Artin group $A(T)$ is defined by a signed graph $T$. Then we find a certain quotient $G(T)$ according to the graph $T$, which also have a natural map onto $A(D_n)$. We prove that $G(T)$ is isomorphic to a semidirect product of a group $K^{(m,n)}$, with the Artin group $A(D_n)$, where $K^{(m,n)}$ depends only on the number $m$ of cycles and on the number $n$ of vertices of the graph $T$.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNj81KAzEURkOxYG37CMJsXEZzM8m9ybKMWoWCm7oehsy9ULHOkFShb9_6s3B1PjjwwVFqCea2JlvjHYLDiZqBIdIhWrz4ty_VVSlvxoCN0c_UdTN8cS7VINW93h5Hrlb5sPuo1nn4HMtCTaV7L7z841y9Pj5smye9eVk_N6uNThbwoDn1XnyC6CEQus6Cd44tu8AYCHwkFPHkexfOnkV64EhCwfUeE0g9Vze_vykPpWSWdsy7fZePLZj2p6n9bqpPeZo7JA</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Amram, Meirav</creator><creator>Shwartz, Robert</creator><creator>Teicher, Mina</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171020</creationdate><title>Covers of D-Type Artin Groups</title><author>Amram, Meirav ; Shwartz, Robert ; Teicher, Mina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-ecd5f5c19518764a21544e2e48e68715976ff575d48876effd1e97f784d56c1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amram, Meirav</creatorcontrib><creatorcontrib>Shwartz, Robert</creatorcontrib><creatorcontrib>Teicher, Mina</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amram, Meirav</au><au>Shwartz, Robert</au><au>Teicher, Mina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covers of D-Type Artin Groups</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2017-10-20</date><risdate>2017</risdate><volume>24</volume><issue>4</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We study certain quotients of generalized Artin groups which have a natural map onto D-type Artin groups, where the generalized Artin group $A(T)$ is defined by a signed graph $T$. Then we find a certain quotient $G(T)$ according to the graph $T$, which also have a natural map onto $A(D_n)$. We prove that $G(T)$ is isomorphic to a semidirect product of a group $K^{(m,n)}$, with the Artin group $A(D_n)$, where $K^{(m,n)}$ depends only on the number $m$ of cycles and on the number $n$ of vertices of the graph $T$.</abstract><doi>10.37236/6146</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2017-10, Vol.24 (4)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_6146
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Covers of D-Type Artin Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covers%20of%20D-Type%20Artin%20Groups&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Amram,%20Meirav&rft.date=2017-10-20&rft.volume=24&rft.issue=4&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/6146&rft_dat=%3Ccrossref%3E10_37236_6146%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true