General Results on the Enumeration of Strings in Dyck Paths

Let $\tau$ be a fixed lattice path (called in this context string) on the integer plane, consisting of two kinds of steps. The Dyck path statistic "number of occurrences of $\tau$" has been studied by many authors, for particular strings only. In this paper, arbitrary strings are considere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2011-03, Vol.18 (1)
Hauptverfasser: Manes, K., Sapounakis, A., Tasoulas, I., Tsikouras, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 18
creator Manes, K.
Sapounakis, A.
Tasoulas, I.
Tsikouras, P.
description Let $\tau$ be a fixed lattice path (called in this context string) on the integer plane, consisting of two kinds of steps. The Dyck path statistic "number of occurrences of $\tau$" has been studied by many authors, for particular strings only. In this paper, arbitrary strings are considered. The associated generating function is evaluated when $\tau$ is a Dyck prefix (or a Dyck suffix). Furthermore, the case when $\tau$ is neither a Dyck prefix nor a Dyck suffix is considered, giving some partial results. Finally, the statistic "number of occurrences of $\tau$ at height at least $j$" is considered, evaluating the corresponding generating function when $\tau$ is either a Dyck prefix or a Dyck suffix.
doi_str_mv 10.37236/561
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-1d94d0dbbdb981a029f93ebb97169cd8f99f8bfe4ad321ba3ccdde2723cdd9563</originalsourceid><addsrcrecordid>eNpNj7tOAzEURC0EEiHhH1zQLvjaWe9eUaEQAlKkRDzqlZ9kYeNFtlPk77GAgurMTDHSIWQG7Fo0XMibWsIJmQBrmqpFLk__5XNykdIHY8AR6wm5Xbngohros0uHISc6Bpp3ji7DYV_23Jc-evqSYx_eE-0DvT-aT7pVeZdm5MyrIbnLP07J28PydfFYrTerp8XdujIcMFdgcW6Z1dpqbEExjh6F0xobkGhs6xF9q72bKys4aCWMsdbxIlKItRRTcvX7a-KYUnS--4r9XsVjB6z7Ee6KsPgG82NHxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>General Results on the Enumeration of Strings in Dyck Paths</title><source>EZB Electronic Journals Library</source><creator>Manes, K. ; Sapounakis, A. ; Tasoulas, I. ; Tsikouras, P.</creator><creatorcontrib>Manes, K. ; Sapounakis, A. ; Tasoulas, I. ; Tsikouras, P.</creatorcontrib><description>Let $\tau$ be a fixed lattice path (called in this context string) on the integer plane, consisting of two kinds of steps. The Dyck path statistic "number of occurrences of $\tau$" has been studied by many authors, for particular strings only. In this paper, arbitrary strings are considered. The associated generating function is evaluated when $\tau$ is a Dyck prefix (or a Dyck suffix). Furthermore, the case when $\tau$ is neither a Dyck prefix nor a Dyck suffix is considered, giving some partial results. Finally, the statistic "number of occurrences of $\tau$ at height at least $j$" is considered, evaluating the corresponding generating function when $\tau$ is either a Dyck prefix or a Dyck suffix.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/561</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2011-03, Vol.18 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-1d94d0dbbdb981a029f93ebb97169cd8f99f8bfe4ad321ba3ccdde2723cdd9563</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Manes, K.</creatorcontrib><creatorcontrib>Sapounakis, A.</creatorcontrib><creatorcontrib>Tasoulas, I.</creatorcontrib><creatorcontrib>Tsikouras, P.</creatorcontrib><title>General Results on the Enumeration of Strings in Dyck Paths</title><title>The Electronic journal of combinatorics</title><description>Let $\tau$ be a fixed lattice path (called in this context string) on the integer plane, consisting of two kinds of steps. The Dyck path statistic "number of occurrences of $\tau$" has been studied by many authors, for particular strings only. In this paper, arbitrary strings are considered. The associated generating function is evaluated when $\tau$ is a Dyck prefix (or a Dyck suffix). Furthermore, the case when $\tau$ is neither a Dyck prefix nor a Dyck suffix is considered, giving some partial results. Finally, the statistic "number of occurrences of $\tau$ at height at least $j$" is considered, evaluating the corresponding generating function when $\tau$ is either a Dyck prefix or a Dyck suffix.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNj7tOAzEURC0EEiHhH1zQLvjaWe9eUaEQAlKkRDzqlZ9kYeNFtlPk77GAgurMTDHSIWQG7Fo0XMibWsIJmQBrmqpFLk__5XNykdIHY8AR6wm5Xbngohros0uHISc6Bpp3ji7DYV_23Jc-evqSYx_eE-0DvT-aT7pVeZdm5MyrIbnLP07J28PydfFYrTerp8XdujIcMFdgcW6Z1dpqbEExjh6F0xobkGhs6xF9q72bKys4aCWMsdbxIlKItRRTcvX7a-KYUnS--4r9XsVjB6z7Ee6KsPgG82NHxQ</recordid><startdate>20110331</startdate><enddate>20110331</enddate><creator>Manes, K.</creator><creator>Sapounakis, A.</creator><creator>Tasoulas, I.</creator><creator>Tsikouras, P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110331</creationdate><title>General Results on the Enumeration of Strings in Dyck Paths</title><author>Manes, K. ; Sapounakis, A. ; Tasoulas, I. ; Tsikouras, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-1d94d0dbbdb981a029f93ebb97169cd8f99f8bfe4ad321ba3ccdde2723cdd9563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manes, K.</creatorcontrib><creatorcontrib>Sapounakis, A.</creatorcontrib><creatorcontrib>Tasoulas, I.</creatorcontrib><creatorcontrib>Tsikouras, P.</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manes, K.</au><au>Sapounakis, A.</au><au>Tasoulas, I.</au><au>Tsikouras, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Results on the Enumeration of Strings in Dyck Paths</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2011-03-31</date><risdate>2011</risdate><volume>18</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Let $\tau$ be a fixed lattice path (called in this context string) on the integer plane, consisting of two kinds of steps. The Dyck path statistic "number of occurrences of $\tau$" has been studied by many authors, for particular strings only. In this paper, arbitrary strings are considered. The associated generating function is evaluated when $\tau$ is a Dyck prefix (or a Dyck suffix). Furthermore, the case when $\tau$ is neither a Dyck prefix nor a Dyck suffix is considered, giving some partial results. Finally, the statistic "number of occurrences of $\tau$ at height at least $j$" is considered, evaluating the corresponding generating function when $\tau$ is either a Dyck prefix or a Dyck suffix.</abstract><doi>10.37236/561</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2011-03, Vol.18 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_561
source EZB Electronic Journals Library
title General Results on the Enumeration of Strings in Dyck Paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Results%20on%20the%20Enumeration%20of%20Strings%20in%20Dyck%20Paths&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Manes,%20K.&rft.date=2011-03-31&rft.volume=18&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/561&rft_dat=%3Ccrossref%3E10_37236_561%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true