Iterative Properties of Birational Rowmotion II: Rectangles and Triangles

Birational rowmotion — a birational map associated to any finite poset $P$ — has been introduced by Einstein and Propp as a far-reaching generalization of the (well-studied) classical rowmotion map on the set of order ideals of $P$. Continuing our exploration of this birational rowmotion, we prove t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2015-09, Vol.22 (3)
Hauptverfasser: Grinberg, Darij, Roby, Tom
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Electronic journal of combinatorics
container_volume 22
creator Grinberg, Darij
Roby, Tom
description Birational rowmotion — a birational map associated to any finite poset $P$ — has been introduced by Einstein and Propp as a far-reaching generalization of the (well-studied) classical rowmotion map on the set of order ideals of $P$. Continuing our exploration of this birational rowmotion, we prove that it has order $p+q$ on the $\left(  p, q\right)  $-rectangle poset (i.e., on the product of a $p$-element chain with a $q$-element chain); we also compute its orders on some triangle-shaped posets. In all cases mentioned, it turns out to have finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set). Our proof in the case of the rectangle poset uses an idea introduced by Volkov (arXiv:hep-th/0606094) to prove the $AA$ case of the Zamolodchikov periodicity conjecture; in fact, the finite order of birational rowmotion on many posets can be considered an analogue to Zamolodchikov periodicity. We comment on suspected, but so far enigmatic, connections to the theory of root posets.
doi_str_mv 10.37236/4335
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_4335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_4335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-60081c0c8684a6a0a40f71b862d1057612e7f03dba0a38d13d820c74288640473</originalsourceid><addsrcrecordid>eNpNT0lLAzEYDaJgrf0PuXgc_bJMkvGmxSVQUEo9D2kWiUwnJQmK_96O9eDprTx4CC0IXDNJmbjhjLUnaEZAykZ1VJz-4-foopQPAEK7rp0hravPpsZPj19z2vtcoy84BXwfJzuNZsDr9LVLE8da3-K1t9WM78OhZkaHNzke1SU6C2YofvGHc_T2-LBZPjerlye9vFs1lra0NgJAEQtWCcWNMGA4BEm2SlBHoJWCUC8DMLc9REw5wpyiYCWnSgkOXLI5ujru2pxKyT70-xx3Jn_3BPrf__30n_0Ay8BLCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iterative Properties of Birational Rowmotion II: Rectangles and Triangles</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Grinberg, Darij ; Roby, Tom</creator><creatorcontrib>Grinberg, Darij ; Roby, Tom</creatorcontrib><description>Birational rowmotion — a birational map associated to any finite poset $P$ — has been introduced by Einstein and Propp as a far-reaching generalization of the (well-studied) classical rowmotion map on the set of order ideals of $P$. Continuing our exploration of this birational rowmotion, we prove that it has order $p+q$ on the $\left(  p, q\right)  $-rectangle poset (i.e., on the product of a $p$-element chain with a $q$-element chain); we also compute its orders on some triangle-shaped posets. In all cases mentioned, it turns out to have finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set). Our proof in the case of the rectangle poset uses an idea introduced by Volkov (arXiv:hep-th/0606094) to prove the $AA$ case of the Zamolodchikov periodicity conjecture; in fact, the finite order of birational rowmotion on many posets can be considered an analogue to Zamolodchikov periodicity. We comment on suspected, but so far enigmatic, connections to the theory of root posets.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/4335</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2015-09, Vol.22 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-60081c0c8684a6a0a40f71b862d1057612e7f03dba0a38d13d820c74288640473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids></links><search><creatorcontrib>Grinberg, Darij</creatorcontrib><creatorcontrib>Roby, Tom</creatorcontrib><title>Iterative Properties of Birational Rowmotion II: Rectangles and Triangles</title><title>The Electronic journal of combinatorics</title><description>Birational rowmotion — a birational map associated to any finite poset $P$ — has been introduced by Einstein and Propp as a far-reaching generalization of the (well-studied) classical rowmotion map on the set of order ideals of $P$. Continuing our exploration of this birational rowmotion, we prove that it has order $p+q$ on the $\left(  p, q\right)  $-rectangle poset (i.e., on the product of a $p$-element chain with a $q$-element chain); we also compute its orders on some triangle-shaped posets. In all cases mentioned, it turns out to have finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set). Our proof in the case of the rectangle poset uses an idea introduced by Volkov (arXiv:hep-th/0606094) to prove the $AA$ case of the Zamolodchikov periodicity conjecture; in fact, the finite order of birational rowmotion on many posets can be considered an analogue to Zamolodchikov periodicity. We comment on suspected, but so far enigmatic, connections to the theory of root posets.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNT0lLAzEYDaJgrf0PuXgc_bJMkvGmxSVQUEo9D2kWiUwnJQmK_96O9eDprTx4CC0IXDNJmbjhjLUnaEZAykZ1VJz-4-foopQPAEK7rp0hravPpsZPj19z2vtcoy84BXwfJzuNZsDr9LVLE8da3-K1t9WM78OhZkaHNzke1SU6C2YofvGHc_T2-LBZPjerlye9vFs1lra0NgJAEQtWCcWNMGA4BEm2SlBHoJWCUC8DMLc9REw5wpyiYCWnSgkOXLI5ujru2pxKyT70-xx3Jn_3BPrf__30n_0Ay8BLCQ</recordid><startdate>20150920</startdate><enddate>20150920</enddate><creator>Grinberg, Darij</creator><creator>Roby, Tom</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150920</creationdate><title>Iterative Properties of Birational Rowmotion II: Rectangles and Triangles</title><author>Grinberg, Darij ; Roby, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-60081c0c8684a6a0a40f71b862d1057612e7f03dba0a38d13d820c74288640473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinberg, Darij</creatorcontrib><creatorcontrib>Roby, Tom</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinberg, Darij</au><au>Roby, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Properties of Birational Rowmotion II: Rectangles and Triangles</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2015-09-20</date><risdate>2015</risdate><volume>22</volume><issue>3</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Birational rowmotion — a birational map associated to any finite poset $P$ — has been introduced by Einstein and Propp as a far-reaching generalization of the (well-studied) classical rowmotion map on the set of order ideals of $P$. Continuing our exploration of this birational rowmotion, we prove that it has order $p+q$ on the $\left(  p, q\right)  $-rectangle poset (i.e., on the product of a $p$-element chain with a $q$-element chain); we also compute its orders on some triangle-shaped posets. In all cases mentioned, it turns out to have finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set). Our proof in the case of the rectangle poset uses an idea introduced by Volkov (arXiv:hep-th/0606094) to prove the $AA$ case of the Zamolodchikov periodicity conjecture; in fact, the finite order of birational rowmotion on many posets can be considered an analogue to Zamolodchikov periodicity. We comment on suspected, but so far enigmatic, connections to the theory of root posets.</abstract><doi>10.37236/4335</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2015-09, Vol.22 (3)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_4335
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Iterative Properties of Birational Rowmotion II: Rectangles and Triangles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Properties%20of%20Birational%20Rowmotion%20II:%20Rectangles%20and%20Triangles&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Grinberg,%20Darij&rft.date=2015-09-20&rft.volume=22&rft.issue=3&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/4335&rft_dat=%3Ccrossref%3E10_37236_4335%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true