Thin Edges in Braces

The bicontraction of a vertex $v$ of degree two in a graph, with precisely two neighbours $v_1$ and $v_2$, consists of shrinking the set $\{v_1,v,v_2\}$ to a single vertex.  The retract of a matching covered graph $G$, denoted by $\widehat{G}$, is the graph obtained from $G$ by repeatedly bicontract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2015-10, Vol.22 (4)
Hauptverfasser: Lucchesi, Cláudio L., De Carvalho, Marcelo H., Murty, U. S. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title The Electronic journal of combinatorics
container_volume 22
creator Lucchesi, Cláudio L.
De Carvalho, Marcelo H.
Murty, U. S. R.
description The bicontraction of a vertex $v$ of degree two in a graph, with precisely two neighbours $v_1$ and $v_2$, consists of shrinking the set $\{v_1,v,v_2\}$ to a single vertex.  The retract of a matching covered graph $G$, denoted by $\widehat{G}$, is the graph obtained from $G$ by repeatedly bicontracting vertices of degree two.  Up to isomorphism, the retract of a matching covered graph $G$ is unique. If $G$ is a brace on six or more vertices, an edge $e$ of $G$ is thin if $\widehat{G-e}$ is a brace.  A thin edge $e$ in a simple brace $G$ is strictly thin if $\widehat{G-e}$ is a simple brace. Theorems concerning the existence of strictly thin edges have been used (implicitly by McCuaig (Pólya's Permanent Problem, Electron. J. of Combin., 11, 2004) and explicitly by the authors (On the Number of Perfect Matchings in a Bipartite Graph, SIAM J. Discrete Math., 27, 940-958, 2013)) as inductive tools for establishing properties of braces.Let $G$ and $J$ be two distinct braces, where $G$ is of order six or more and $J$ is a simple matching minor of $G$.  It follows from a theorem of McCuaig (Brace Generation, J. Graph Theory, 38, 124-169, 2001) that $G$ has a thin edge $e$ such that $J$ is a matching minor of $G-e$.  In Section 2, we give an alternative, and simpler proof, of this assertion. Our method of proof lends itself to proving stronger results concerning thin edges.Let ${\cal G}^+$ denote the family of braces consisting of all prisms, all Möbius ladders, all biwheels, and all extended biwheels.  Strengthening another result of McCuaig on brace generation, we show that every simple brace of order six or more which is not a member of ${\cal G}^+$ has at least two strictly thin edges. We also give examples to show that this result is best possible.
doi_str_mv 10.37236/4141
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_4141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_4141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-4a9cb3ae149f43cab36ce14e0cb5c8c49ec64d511570a8c3338de32087d61db73</originalsourceid><addsrcrecordid>eNpNj7luAjEURS0EEgTo-IBpUg74zfNaEsQmIdFAPfI8e2BQAshOk79nS0F1z22OdBgbAh-jLlBNBAhosR5wrXNjC9V-4y77SOnEORTWyh4b7Y7NOZv7Q0jZHb6io5AGrFO77xSG_9tn-8V8N1vlm-1yPZtucgIjf3PhLFXoAghbCyRXoaL7CZwqSYaEDaSElwBSc2cIEY0PWHCjvQJfaeyzz5eX4iWlGOryGpsfF_9K4OUzpXyk4A0x_Dhe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thin Edges in Braces</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lucchesi, Cláudio L. ; De Carvalho, Marcelo H. ; Murty, U. S. R.</creator><creatorcontrib>Lucchesi, Cláudio L. ; De Carvalho, Marcelo H. ; Murty, U. S. R.</creatorcontrib><description>The bicontraction of a vertex $v$ of degree two in a graph, with precisely two neighbours $v_1$ and $v_2$, consists of shrinking the set $\{v_1,v,v_2\}$ to a single vertex.  The retract of a matching covered graph $G$, denoted by $\widehat{G}$, is the graph obtained from $G$ by repeatedly bicontracting vertices of degree two.  Up to isomorphism, the retract of a matching covered graph $G$ is unique. If $G$ is a brace on six or more vertices, an edge $e$ of $G$ is thin if $\widehat{G-e}$ is a brace.  A thin edge $e$ in a simple brace $G$ is strictly thin if $\widehat{G-e}$ is a simple brace. Theorems concerning the existence of strictly thin edges have been used (implicitly by McCuaig (Pólya's Permanent Problem, Electron. J. of Combin., 11, 2004) and explicitly by the authors (On the Number of Perfect Matchings in a Bipartite Graph, SIAM J. Discrete Math., 27, 940-958, 2013)) as inductive tools for establishing properties of braces.Let $G$ and $J$ be two distinct braces, where $G$ is of order six or more and $J$ is a simple matching minor of $G$.  It follows from a theorem of McCuaig (Brace Generation, J. Graph Theory, 38, 124-169, 2001) that $G$ has a thin edge $e$ such that $J$ is a matching minor of $G-e$.  In Section 2, we give an alternative, and simpler proof, of this assertion. Our method of proof lends itself to proving stronger results concerning thin edges.Let ${\cal G}^+$ denote the family of braces consisting of all prisms, all Möbius ladders, all biwheels, and all extended biwheels.  Strengthening another result of McCuaig on brace generation, we show that every simple brace of order six or more which is not a member of ${\cal G}^+$ has at least two strictly thin edges. We also give examples to show that this result is best possible.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/4141</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2015-10, Vol.22 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Lucchesi, Cláudio L.</creatorcontrib><creatorcontrib>De Carvalho, Marcelo H.</creatorcontrib><creatorcontrib>Murty, U. S. R.</creatorcontrib><title>Thin Edges in Braces</title><title>The Electronic journal of combinatorics</title><description>The bicontraction of a vertex $v$ of degree two in a graph, with precisely two neighbours $v_1$ and $v_2$, consists of shrinking the set $\{v_1,v,v_2\}$ to a single vertex.  The retract of a matching covered graph $G$, denoted by $\widehat{G}$, is the graph obtained from $G$ by repeatedly bicontracting vertices of degree two.  Up to isomorphism, the retract of a matching covered graph $G$ is unique. If $G$ is a brace on six or more vertices, an edge $e$ of $G$ is thin if $\widehat{G-e}$ is a brace.  A thin edge $e$ in a simple brace $G$ is strictly thin if $\widehat{G-e}$ is a simple brace. Theorems concerning the existence of strictly thin edges have been used (implicitly by McCuaig (Pólya's Permanent Problem, Electron. J. of Combin., 11, 2004) and explicitly by the authors (On the Number of Perfect Matchings in a Bipartite Graph, SIAM J. Discrete Math., 27, 940-958, 2013)) as inductive tools for establishing properties of braces.Let $G$ and $J$ be two distinct braces, where $G$ is of order six or more and $J$ is a simple matching minor of $G$.  It follows from a theorem of McCuaig (Brace Generation, J. Graph Theory, 38, 124-169, 2001) that $G$ has a thin edge $e$ such that $J$ is a matching minor of $G-e$.  In Section 2, we give an alternative, and simpler proof, of this assertion. Our method of proof lends itself to proving stronger results concerning thin edges.Let ${\cal G}^+$ denote the family of braces consisting of all prisms, all Möbius ladders, all biwheels, and all extended biwheels.  Strengthening another result of McCuaig on brace generation, we show that every simple brace of order six or more which is not a member of ${\cal G}^+$ has at least two strictly thin edges. We also give examples to show that this result is best possible.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNj7luAjEURS0EEgTo-IBpUg74zfNaEsQmIdFAPfI8e2BQAshOk79nS0F1z22OdBgbAh-jLlBNBAhosR5wrXNjC9V-4y77SOnEORTWyh4b7Y7NOZv7Q0jZHb6io5AGrFO77xSG_9tn-8V8N1vlm-1yPZtucgIjf3PhLFXoAghbCyRXoaL7CZwqSYaEDaSElwBSc2cIEY0PWHCjvQJfaeyzz5eX4iWlGOryGpsfF_9K4OUzpXyk4A0x_Dhe</recordid><startdate>20151030</startdate><enddate>20151030</enddate><creator>Lucchesi, Cláudio L.</creator><creator>De Carvalho, Marcelo H.</creator><creator>Murty, U. S. R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151030</creationdate><title>Thin Edges in Braces</title><author>Lucchesi, Cláudio L. ; De Carvalho, Marcelo H. ; Murty, U. S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-4a9cb3ae149f43cab36ce14e0cb5c8c49ec64d511570a8c3338de32087d61db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucchesi, Cláudio L.</creatorcontrib><creatorcontrib>De Carvalho, Marcelo H.</creatorcontrib><creatorcontrib>Murty, U. S. R.</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucchesi, Cláudio L.</au><au>De Carvalho, Marcelo H.</au><au>Murty, U. S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin Edges in Braces</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2015-10-30</date><risdate>2015</risdate><volume>22</volume><issue>4</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>The bicontraction of a vertex $v$ of degree two in a graph, with precisely two neighbours $v_1$ and $v_2$, consists of shrinking the set $\{v_1,v,v_2\}$ to a single vertex.  The retract of a matching covered graph $G$, denoted by $\widehat{G}$, is the graph obtained from $G$ by repeatedly bicontracting vertices of degree two.  Up to isomorphism, the retract of a matching covered graph $G$ is unique. If $G$ is a brace on six or more vertices, an edge $e$ of $G$ is thin if $\widehat{G-e}$ is a brace.  A thin edge $e$ in a simple brace $G$ is strictly thin if $\widehat{G-e}$ is a simple brace. Theorems concerning the existence of strictly thin edges have been used (implicitly by McCuaig (Pólya's Permanent Problem, Electron. J. of Combin., 11, 2004) and explicitly by the authors (On the Number of Perfect Matchings in a Bipartite Graph, SIAM J. Discrete Math., 27, 940-958, 2013)) as inductive tools for establishing properties of braces.Let $G$ and $J$ be two distinct braces, where $G$ is of order six or more and $J$ is a simple matching minor of $G$.  It follows from a theorem of McCuaig (Brace Generation, J. Graph Theory, 38, 124-169, 2001) that $G$ has a thin edge $e$ such that $J$ is a matching minor of $G-e$.  In Section 2, we give an alternative, and simpler proof, of this assertion. Our method of proof lends itself to proving stronger results concerning thin edges.Let ${\cal G}^+$ denote the family of braces consisting of all prisms, all Möbius ladders, all biwheels, and all extended biwheels.  Strengthening another result of McCuaig on brace generation, we show that every simple brace of order six or more which is not a member of ${\cal G}^+$ has at least two strictly thin edges. We also give examples to show that this result is best possible.</abstract><doi>10.37236/4141</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2015-10, Vol.22 (4)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_4141
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Thin Edges in Braces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20Edges%20in%20Braces&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Lucchesi,%20Cl%C3%A1udio%20L.&rft.date=2015-10-30&rft.volume=22&rft.issue=4&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/4141&rft_dat=%3Ccrossref%3E10_37236_4141%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true