Extremal Values of Ratios: Distance Problems vs. Subtree Problems in Trees
The authors discovered a dual behaviour of two tree indices, the Wiener index and the number of subtrees, for a number of extremal problems [Discrete Appl. Math. 155 (3) 2006, 374-385; Adv. Appl. Math. 34 (2005), 138-155]. Barefoot, Entringer and Székely [Discrete Appl. Math. 80 (1997), 37-56] det...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2013-03, Vol.20 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 20 |
creator | Székely, László Wang, Hua |
description | The authors discovered a dual behaviour of two tree indices, the Wiener index and the number of subtrees, for a number of extremal problems [Discrete Appl. Math. 155 (3) 2006, 374-385; Adv. Appl. Math. 34 (2005), 138-155]. Barefoot, Entringer and Székely [Discrete Appl. Math. 80 (1997), 37-56] determined extremal values of $\sigma_T(w)/\sigma_T(u)$, $\sigma_T(w)/\sigma_T(v)$, $\sigma(T)/\sigma_T(v)$, and $\sigma(T)/\sigma_T(w)$, where $T$ is a tree on $n$ vertices, $v$ is in the centroid of the tree $T$, and $u,w$ are leaves in $T$.In this paper we test how far the negative correlation between distances and subtrees go if we look for the extremal values of $F_T(w)/F_T(u)$, $F_T(w)/F_T(v)$, $F(T)/F_T(v)$, and $F(T)/F_T(w)$, where $T$ is a tree on $n$ vertices, $v$ is in the subtree core of the tree $T$, and $u,w$ are leaves in $T$-the complete analogue of [Discrete Appl. Math. 80 (1997), 37-56], changing distances to the number of subtrees. We include a number of open problems, shifting the interest towards the number of subtrees in graphs. |
doi_str_mv | 10.37236/3020 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_3020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_3020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-bad822d5cb9350132c98ddda10ae5d814766ca353a58cee2e029a631ed40192e3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqX0H7xhmTIe10nMDpXyUiUQFLbRxJ5IQWmDPCmCv6c8Fl3dqyPduzhKTQxMbYE2P7eAcKBGBooiKz3mh3v9WJ2IvAEY9N6N1P3ic0i8pk6_Urdl0X2jn2hoe7nQV60MtAmsH1Nfd7wW_SFT_bytd4s92G70agfkVB011AlP_nOsXq4Xq_lttny4uZtfLrOAaIasplgiRhdqbx0Yi8GXMUYyQOxiaWZFngeyzpIrAzMyoKfcGo4zMB7ZjtXZ329IvUjipnpP7ZrSV2Wg-hVQ_Qiw3xc1TDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extremal Values of Ratios: Distance Problems vs. Subtree Problems in Trees</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Székely, László ; Wang, Hua</creator><creatorcontrib>Székely, László ; Wang, Hua</creatorcontrib><description>The authors discovered a dual behaviour of two tree indices, the Wiener index and the number of subtrees, for a number of extremal problems [Discrete Appl. Math. 155 (3) 2006, 374-385; Adv. Appl. Math. 34 (2005), 138-155]. Barefoot, Entringer and Székely [Discrete Appl. Math. 80 (1997), 37-56] determined extremal values of $\sigma_T(w)/\sigma_T(u)$, $\sigma_T(w)/\sigma_T(v)$, $\sigma(T)/\sigma_T(v)$, and $\sigma(T)/\sigma_T(w)$, where $T$ is a tree on $n$ vertices, $v$ is in the centroid of the tree $T$, and $u,w$ are leaves in $T$.In this paper we test how far the negative correlation between distances and subtrees go if we look for the extremal values of $F_T(w)/F_T(u)$, $F_T(w)/F_T(v)$, $F(T)/F_T(v)$, and $F(T)/F_T(w)$, where $T$ is a tree on $n$ vertices, $v$ is in the subtree core of the tree $T$, and $u,w$ are leaves in $T$-the complete analogue of [Discrete Appl. Math. 80 (1997), 37-56], changing distances to the number of subtrees. We include a number of open problems, shifting the interest towards the number of subtrees in graphs.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/3020</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2013-03, Vol.20 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-bad822d5cb9350132c98ddda10ae5d814766ca353a58cee2e029a631ed40192e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Székely, László</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><title>Extremal Values of Ratios: Distance Problems vs. Subtree Problems in Trees</title><title>The Electronic journal of combinatorics</title><description>The authors discovered a dual behaviour of two tree indices, the Wiener index and the number of subtrees, for a number of extremal problems [Discrete Appl. Math. 155 (3) 2006, 374-385; Adv. Appl. Math. 34 (2005), 138-155]. Barefoot, Entringer and Székely [Discrete Appl. Math. 80 (1997), 37-56] determined extremal values of $\sigma_T(w)/\sigma_T(u)$, $\sigma_T(w)/\sigma_T(v)$, $\sigma(T)/\sigma_T(v)$, and $\sigma(T)/\sigma_T(w)$, where $T$ is a tree on $n$ vertices, $v$ is in the centroid of the tree $T$, and $u,w$ are leaves in $T$.In this paper we test how far the negative correlation between distances and subtrees go if we look for the extremal values of $F_T(w)/F_T(u)$, $F_T(w)/F_T(v)$, $F(T)/F_T(v)$, and $F(T)/F_T(w)$, where $T$ is a tree on $n$ vertices, $v$ is in the subtree core of the tree $T$, and $u,w$ are leaves in $T$-the complete analogue of [Discrete Appl. Math. 80 (1997), 37-56], changing distances to the number of subtrees. We include a number of open problems, shifting the interest towards the number of subtrees in graphs.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqX0H7xhmTIe10nMDpXyUiUQFLbRxJ5IQWmDPCmCv6c8Fl3dqyPduzhKTQxMbYE2P7eAcKBGBooiKz3mh3v9WJ2IvAEY9N6N1P3ic0i8pk6_Urdl0X2jn2hoe7nQV60MtAmsH1Nfd7wW_SFT_bytd4s92G70agfkVB011AlP_nOsXq4Xq_lttny4uZtfLrOAaIasplgiRhdqbx0Yi8GXMUYyQOxiaWZFngeyzpIrAzMyoKfcGo4zMB7ZjtXZ329IvUjipnpP7ZrSV2Wg-hVQ_Qiw3xc1TDY</recordid><startdate>20130324</startdate><enddate>20130324</enddate><creator>Székely, László</creator><creator>Wang, Hua</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130324</creationdate><title>Extremal Values of Ratios: Distance Problems vs. Subtree Problems in Trees</title><author>Székely, László ; Wang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-bad822d5cb9350132c98ddda10ae5d814766ca353a58cee2e029a631ed40192e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Székely, László</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Székely, László</au><au>Wang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal Values of Ratios: Distance Problems vs. Subtree Problems in Trees</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2013-03-24</date><risdate>2013</risdate><volume>20</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>The authors discovered a dual behaviour of two tree indices, the Wiener index and the number of subtrees, for a number of extremal problems [Discrete Appl. Math. 155 (3) 2006, 374-385; Adv. Appl. Math. 34 (2005), 138-155]. Barefoot, Entringer and Székely [Discrete Appl. Math. 80 (1997), 37-56] determined extremal values of $\sigma_T(w)/\sigma_T(u)$, $\sigma_T(w)/\sigma_T(v)$, $\sigma(T)/\sigma_T(v)$, and $\sigma(T)/\sigma_T(w)$, where $T$ is a tree on $n$ vertices, $v$ is in the centroid of the tree $T$, and $u,w$ are leaves in $T$.In this paper we test how far the negative correlation between distances and subtrees go if we look for the extremal values of $F_T(w)/F_T(u)$, $F_T(w)/F_T(v)$, $F(T)/F_T(v)$, and $F(T)/F_T(w)$, where $T$ is a tree on $n$ vertices, $v$ is in the subtree core of the tree $T$, and $u,w$ are leaves in $T$-the complete analogue of [Discrete Appl. Math. 80 (1997), 37-56], changing distances to the number of subtrees. We include a number of open problems, shifting the interest towards the number of subtrees in graphs.</abstract><doi>10.37236/3020</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2013-03, Vol.20 (1) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_3020 |
source | EZB-FREE-00999 freely available EZB journals |
title | Extremal Values of Ratios: Distance Problems vs. Subtree Problems in Trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20Values%20of%20Ratios:%20Distance%20Problems%20vs.%20Subtree%20Problems%20in%20Trees&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Sz%C3%A9kely,%20L%C3%A1szl%C3%B3&rft.date=2013-03-24&rft.volume=20&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/3020&rft_dat=%3Ccrossref%3E10_37236_3020%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |